Automated and Interactive Lesion Detection and Segmentation in Uterine Cervix Images

被引:29
|
作者
Alush, Amir [1 ]
Greenspan, Hayit [1 ]
Goldberger, Jacob [2 ]
机构
[1] Tel Aviv Univ, Dept Biomed Engn, IL-69978 Tel Aviv, Israel
[2] Bar Ilan Univ, Sch Engn, IL-52900 Ramat Gan, Israel
关键词
Belief-propagation; cervigrams; lesion detection; lesion segmentation; Markov random field (MRF); uterine cervix; visual words; watershed map; HUMAN-PAPILLOMAVIRUS; CANCER;
D O I
10.1109/TMI.2009.2037201
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a procedure for automatic extraction and segmentation of a class-specific object (or region) by learning class-specific boundaries. We describe and evaluate the method with a specific focus on the detection of lesion regions in uterine cervix images. The watershed segmentation map of the input image is modeled using a Markov random field (MRF) in which watershed regions correspond to binary random variables indicating whether the region is part of the lesion tissue or not. The local pairwise factors on the arcs of the watershed map indicate whether the arc is part of the object boundary. The factors are based on supervised learning of a visual word distribution. The final lesion region segmentation is obtained using a loopy belief propagation applied to the watershed arc-level MRF. Experimental results on real data show state-of-the-art segmentation results on this very challenging task that, if necessary, can be interactively enhanced.
引用
收藏
页码:488 / 501
页数:14
相关论文
共 50 条
  • [1] LESION DETECTION AND SEGMENTATION IN UTERINE CERVIX IMAGES USING AN ARC-LEVEL MRF
    Alush, Amir
    Greenspan, Hayit
    Goldberger, Jacob
    2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 474 - +
  • [2] Detection of Specular Reflection and Segmentation of Cervix Region in Uterine Cervix Images for Cervical Cancer Screening
    Kudva, V.
    Prasad, K.
    Guruvare, S.
    IRBM, 2017, 38 (05) : 281 - 291
  • [3] Shape Priors for Segmentation of the Cervix Region Within Uterine Cervix Images
    Lotenberg, Shelly
    Gordon, Shiri
    Greenspan, Hayit
    JOURNAL OF DIGITAL IMAGING, 2009, 22 (03) : 286 - 296
  • [4] Shape priors for segmentation of the cervix region within uterine cervix images
    Lotenberg, Shelly
    Gordon, Shiri
    Greenspan, Hayit
    MEDICAL IMAGING 2008: IMAGE PROCESSING, PTS 1-3, 2008, 6914
  • [5] Shape Priors for Segmentation of the Cervix Region Within Uterine Cervix Images
    Shelly Lotenberg
    Shiri Gordon
    Hayit Greenspan
    Journal of Digital Imaging, 2009, 22 : 286 - 296
  • [6] Image segmentation of uterine cervix images for indexing in PACS
    Gordon, S
    Zimmerman, G
    Greenspan, H
    17TH IEEE SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 2004, : 298 - 303
  • [7] Polarimetric images segmentation for lesion detection
    Djaouti, S. Mohammed
    Koudache, A.
    Boudaieb, A.
    COMPLIFE 2007: 3RD INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL LIFE SCIENCE, 2007, 940 : 101 - +
  • [8] An Automated Multimodal Spectral Cluster Based Segmentation for Tumor and Lesion Detection in PET Images
    Manoj, M.
    Suresh, L. Padma
    PROCEEDINGS OF IEEE INTERNATIONAL CONFERENCE ON CIRCUIT, POWER AND COMPUTING TECHNOLOGIES (ICCPCT 2016), 2016,
  • [9] A rare lesion of the uterine cervix
    Raoux, Delphine
    Clemenson, Alix
    Felloni, Bertrand
    Khaddage, Abir
    Vaunois, Brigitte
    Perret, Anne Gentil
    Peoch, Michel
    ANNALES DE PATHOLOGIE, 2007, 27 (03) : 257 - 259
  • [10] Automatic Detection of Anatomical Landmarks in Uterine Cervix Images
    Greenspan, Hayit
    Gordon, Shiri
    Zimmerman, Gali
    Lotenberg, Shelly
    Jeronimo, Jose
    Antani, Sameer
    Long, Rodney
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (03) : 454 - 468