Salient Object Detection via Augmented Hypotheses

被引:0
|
作者
Nguyen, Tam, V [1 ]
Sepulveda, Jose [1 ]
机构
[1] Singapore Polytech, Dept Technol Innovat & Enterprise, Singapore, Singapore
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose using augmented hypotheses which consider objectness, foreground and compactness for salient object detection. Our algorithm consists of four basic steps. First, our method generates the objectness map via objectness hypotheses. Based on the objectness map, we estimate the foreground margin and compute the corresponding foreground map which prefers the foreground objects. From the objectness map and the foreground map, the compactness map is formed to favor the compact objects. We then derive a saliency measure that produces a pixel-accurate saliency map which uniformly covers the objects of interest and consistently separates fore-and background. We finally evaluate the proposed framework on two challenging datasets, MSRA-1000 and iCoSeg. Our extensive experimental results show that our method outperforms state-of-the-art approaches.
引用
收藏
页码:2176 / 2182
页数:7
相关论文
共 50 条
  • [1] Salient Object Detection Via Harris Corner
    Jin, Dongliang
    Zhu, Songhao
    Cheng, Yanyun
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 1108 - 1112
  • [2] Salient object detection via spectral matting
    Naqvi, Syed S.
    Browne, Will N.
    Hollitt, Christopher
    PATTERN RECOGNITION, 2016, 51 : 209 - 224
  • [3] Salient Object Detection via Objectness Proposals
    Nguyen, Tam V.
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 4286 - 4287
  • [4] Salient object detection via proposal selection
    Zhang, Lihe
    Zhou, Qin
    NEUROCOMPUTING, 2018, 295 : 59 - 71
  • [5] Salient Object Detection via Integrity Learning
    Zhuge, Mingchen
    Fan, Deng-Ping
    Liu, Nian
    Zhang, Dingwen
    Xu, Dong
    Shao, Ling
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3738 - 3752
  • [6] Salient Object Detection via Bootstrap Learning
    Tong, Na
    Lu, Huchuan
    Ruan, Xiang
    Yang, Ming-Hsuan
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 1884 - 1892
  • [7] Salient Object Detection via Random Forest
    Du, Shuze
    Chen, Shifeng
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (01) : 51 - 54
  • [8] Salient Object Detection via Distribution of Contrast
    Huang, Xiaoming
    IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 553 - 565
  • [9] SALIENT OBJECT DETECTION VIA OBJECTNESS MEASURE
    Srivatsa, Sai R.
    Babu, R. Venkatesh
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4481 - 4485
  • [10] SALIENT OBJECT DETECTION VIA BACKGROUND CONTRAST
    Zhou, Quan
    Li, Nianyi
    Chen, Jianxin
    Cai, Shu
    Latecki, Longin Jan
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 1463 - 1467