Gravitational-wave limit on the Chandrasekhar mass of dark matter

被引:15
|
作者
Singh, Divya [1 ,2 ]
Ryan, Michael [1 ,2 ]
Magee, Ryan [1 ,2 ]
Akhter, Towsifa [1 ]
Shandera, Sarah [1 ,2 ]
Jeong, Donghui [2 ,3 ]
Hanna, Chad [1 ,2 ,3 ,4 ]
机构
[1] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[2] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA
[4] Penn State Univ, Inst CyberSci, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
FRAGMENTATION; CONSTRAINTS; SCALE; STAR;
D O I
10.1103/PhysRevD.104.044015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We explore a new paradigm to study dissipative dark matter models using gravitational-wave observations. We consider a dark atomic model which predicts the formation of binary black holes such as GW190425 while obeying constraints from large-scale structure, and improving on the missing-satellite problem. Using LIGO and Virgo gravitational-wave data from September 12, 2015 to October 1, 2019, we show that interpreting GW190425 as a dark matter black-hole binary limits the Chandrasekhar mass for dark matter to be below 1.4 M-circle dot at >99.9% confidence implying that the dark proton is heavier than 0.95 GeV, while also suggesting that the molecular energy-level spacing of dark molecules lies near 10(-3) eV and constraining the cooling rate of dark matter at low temperatures.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] INTO THE LAIR: GRAVITATIONAL-WAVE SIGNATURES OF DARK MATTER
    Macedo, Caio F. B.
    Pani, Paolo
    Cardoso, Vitor
    Crispino, Luis C. B.
    [J]. ASTROPHYSICAL JOURNAL, 2013, 774 (01):
  • [2] Searching for Dark Photon Dark Matter with Gravitational-Wave Detectors
    Pierce, Aaron
    Riles, Keith
    Zhao, Yue
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (06)
  • [3] Gravitational-Wave Fringes at LIGO: Detecting Compact Dark Matter by Gravitational Lensing
    Jung, Sunghoon
    Shin, Chang Sub
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (04)
  • [4] Secondary accretion of dark matter in intermediate mass-ratio inspirals: Dark-matter dynamics and gravitational-wave phase
    Nichols, David A.
    Wade, Benjamin A.
    Grant, Alexander M.
    [J]. PHYSICAL REVIEW D, 2023, 108 (12)
  • [5] Gravitational-wave event rates as a new probe for dark matter microphysics
    Mosbech, Markus R.
    Jenkins, Alexander C.
    Bose, Sownak
    Boehm, Celine
    Sakellariadou, Mairi
    Wong, Yvonne Y. Y.
    [J]. PHYSICAL REVIEW D, 2023, 108 (04)
  • [6] Detectability of ultralight scalar field dark matter with gravitational-wave detectors
    Morisaki, Soichiro
    Suyama, Teruaki
    [J]. PHYSICAL REVIEW D, 2019, 100 (12)
  • [7] Direct limits for scalar field dark matter from a gravitational-wave detector
    Vermeulen, Sander M.
    Relton, Philip
    Grote, Hartmut
    Raymond, Vivien
    Affeldt, Christoph
    Bergamin, Fabio
    Bisht, Aparna
    Brinkmann, Marc
    Danzmann, Karsten
    Doravari, Suresh
    Kringel, Volker
    Lough, James
    Lueck, Harald
    Mehmet, Moritz
    Mukund, Nikhil
    Nadji, Severin
    Schreiber, Emil
    Sorazu, Borja
    Strain, Kenneth A.
    Vahlbruch, Henning
    Weinert, Michael
    Willke, Benno
    Wittel, Holger
    [J]. NATURE, 2021, 600 (7889) : 424 - +
  • [9] Direct limits for scalar field dark matter from a gravitational-wave detector
    Sander M. Vermeulen
    Philip Relton
    Hartmut Grote
    Vivien Raymond
    Christoph Affeldt
    Fabio Bergamin
    Aparna Bisht
    Marc Brinkmann
    Karsten Danzmann
    Suresh Doravari
    Volker Kringel
    James Lough
    Harald Lück
    Moritz Mehmet
    Nikhil Mukund
    Séverin Nadji
    Emil Schreiber
    Borja Sorazu
    Kenneth A. Strain
    Henning Vahlbruch
    Michael Weinert
    Benno Willke
    Holger Wittel
    [J]. Nature, 2021, 600 : 424 - 428
  • [10] Novel signatures of dark matter in laser-interferometric gravitational-wave detectors
    Grote, H.
    Stadnik, Y., V
    [J]. PHYSICAL REVIEW RESEARCH, 2019, 1 (03):