On a 3-D generalized Hamiltonian model with conservative and dissipative chaotic flows

被引:30
|
作者
Cang, Shijian [1 ,2 ]
Wu, Aiguo [1 ]
Wang, Zenghui [3 ]
Chen, Zengqiang [4 ]
机构
[1] Tianjin Univ, Sch Elect Engn & Automat, Tianjin 300072, Peoples R China
[2] Tianjin Univ Sci & Technol, Dept Ind Design, Tianjin 300457, Peoples R China
[3] Univ South Africa, Dept Elect & Min Engn, ZA-1710 Florida, South Africa
[4] Nankai Univ, Coll Comp & Control Engn, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Generalized Hamiltonian system; 3-D dynamical system; Chaos; Lyapunov exponents; CANONICAL DYNAMICS; SYSTEM; ATTRACTORS; ORDER;
D O I
10.1016/j.chaos.2017.03.046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on the generalized Hamiltonian system, a new method for constructing a class of three-dimensional (3-D) chaotic systems is presented in this paper. After choosing the proper parameters of skew-symmetric matrix, dissipative matrix and external input, one smooth 3-D chaotic system is proposed to show the effectiveness of the proposed method. Numerical simulation techniques, including phase portraits, Poincare sections, Lyapunov exponents and bifurcation diagram, illustrate that the proposed 3-D system has periodic, quasi-periodic and chaotic flows under the conditions of different parameters. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:45 / 51
页数:7
相关论文
共 50 条
  • [1] A 3-D novel conservative chaotic system and its generalized projective synchronization via adaptive control
    Vaidyanathan, S.
    Pakiriswamy, S.
    Journal of Engineering Science and Technology Review, 2015, 8 (02) : 52 - 60
  • [2] A family of new generalized multi-scroll Hamiltonian conservative chaotic flows on invariant hypersurfaces and FPGA implementation
    Jia, Hongyan
    Liu, Jingwen
    Li, Wei
    Du, Meng
    CHAOS SOLITONS & FRACTALS, 2023, 172
  • [3] GAUSSIAN MODEL FOR CHAOTIC INSTABILITY OF HAMILTONIAN FLOWS
    CASETTI, L
    LIVI, R
    PETTINI, M
    PHYSICAL REVIEW LETTERS, 1995, 74 (03) : 375 - 378
  • [4] A GENERALIZED 3-D FOUR-WING CHAOTIC SYSTEM
    Wang, Zenghui
    Qi, Guoyuan
    Sun, Yanxia
    Van Wyk, Michael Antonie
    Van Wyk, Barend Jacobus
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (11): : 3841 - 3853
  • [5] Constructing 3D conservative chaotic system with dissipative term based on Shilnikov theorem
    Li, Yue
    Yuan, Mingfeng
    Chen, Zengqiang
    CHAOS SOLITONS & FRACTALS, 2023, 171
  • [6] Development of a generalized multi-layer model for 3-D simulation of free surface flows
    Zarrati, AR
    Jin, YC
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2004, 46 (10) : 1049 - 1067
  • [7] Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system
    Vaidyanathan, Sundarapandian
    Volos, Christos
    ARCHIVES OF CONTROL SCIENCES, 2015, 25 (03): : 333 - 353
  • [8] Generating multicluster conservative chaotic flows from a generalized Sprott-A system
    Cang, Shijian
    Li, Yue
    Kang, Zhijun
    Wang, Zenghui
    CHAOS SOLITONS & FRACTALS, 2020, 133
  • [9] Solving generalized lattice Boltzmann model for 3-D cavity flows using CUDA-GPU
    Li ChengGong
    Maa, Jerome P. Y.
    Kang HaiGui
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2012, 55 (10) : 1894 - 1904
  • [10] Solving generalized lattice Boltzmann model for 3-D cavity flows using CUDA-GPU
    ChengGong Li
    Jerome P. -Y. Maa
    HaiGui Kang
    Science China Physics, Mechanics and Astronomy, 2012, 55 : 1894 - 1904