Human Behavior Drift Detection in a Smart Home Environment

被引:5
|
作者
Masciadri, Andrea [1 ]
Trofimova, Anna A. [1 ]
Matteucci, Matteo [1 ]
Salice, Fabio [1 ]
机构
[1] Politecn Milan, Dept Elect Informat & Bioengn, Via Anzani 42, I-22100 Como, Italy
关键词
Behavioral drift detection; smart home; HMM; Likelihood ratio test;
D O I
10.3233/978-1-61499-798-6-199
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The proposed system aims at elderly people independent living by providing an early indicator of habits changes which might be relevant for a diagnosis of diseases. It relies on Hidden Markov Model to describe the behavior observing sensors data, while Likelihood Ratio Test gives the variation within different time periods.
引用
收藏
页码:199 / 203
页数:5
相关论文
共 50 条
  • [1] An Approach for Behavioral Drift Detection in a Smart Home
    Azefack, Cyriac
    Phan, Raksmey
    Augusto, Vincent
    Gardin, Guillaume
    Coquard, Claude Montuy
    Bouvier, Remi
    Xie, Xiaolan
    [J]. 2019 IEEE 15TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2019, : 727 - 732
  • [2] Activity detection in smart home environment
    Skocir, Pavle
    Krivic, Petar
    Tomeljak, Matea
    Kusek, Mario
    Jezic, Gordan
    [J]. KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS: PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE KES-2016, 2016, 96 : 672 - 681
  • [3] Human activity detection in smart home environment with self-adaptive neural networks
    Zheng, Huiru
    Wang, Haiying
    Black, Norman
    [J]. PROCEEDINGS OF 2008 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL, VOLS 1 AND 2, 2008, : 1505 - +
  • [4] Smart Fall: Accelerometer-Based Fall Detection in a Smart Home Environment
    Sprute, Dennis
    Poertner, Aljoscha
    Weinitschke, Alexander
    Koenig, Matthias
    [J]. INCLUSIVE SMART CITIES AND E-HEALTH, 2015, 9102 : 194 - 205
  • [5] Anomaly Detection for Smart Home Based on User Behavior
    Yamauchi, Masaaki
    Ohsita, Yuichi
    Murata, Masayuki
    Ueda, Kensuke
    Kato, Yoshiaki
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2019,
  • [6] Improved human action recognition in a smart home environment setting
    Amiri, S. M.
    Pourazad, M. T.
    Nasiopoulos, P.
    Leung, V. C. M.
    [J]. IRBM, 2014, 35 (06) : 321 - 328
  • [7] Hierarchical querying scheme of human motions for smart home environment
    Tak, Yoon-Sik
    Kim, Jongik
    Hwang, Eenjun
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2012, 25 (07) : 1301 - 1312
  • [8] Improving Network-Based Anomaly Detection in Smart Home Environment
    Li, Xiaonan
    Ghodosi, Hossein
    Chen, Chao
    Sankupellay, Mangalam
    Lee, Ickjai
    [J]. SENSORS, 2022, 22 (15)
  • [9] HomeMonitor: An Enhanced Device Event Detection Method for Smart Home Environment
    Zhao, Meng
    Chen, Jie
    Yang, Zhikai
    Liu, Yaping
    Zhang, Shuo
    [J]. SENSORS, 2022, 22 (23)
  • [10] Anomaly detection using temporal data mining in a smart home environment
    Jakkula, V.
    Cook, D. J.
    [J]. METHODS OF INFORMATION IN MEDICINE, 2008, 47 (01) : 70 - 75