On the Greatest Common Divisor of the Value of Two Polynomials

被引:5
|
作者
Frenkel, Peter E. [1 ,2 ]
Pelikan, Jozsef [1 ]
机构
[1] Eotvos Unnvets, Dept Algebra & Number Theory, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
[2] Hungarian Acad Sci, Renyi Inst Math, 13-15 Realtanodu Utca, H-1053 Budapest, Hungary
来源
AMERICAN MATHEMATICAL MONTHLY | 2017年 / 124卷 / 05期
关键词
D O I
10.4169/amer.math.monthly.124.5.446
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if two monic polynomials with integer coefficients have a square-free resultant, then all positive divisors of the resultant arise as the greatest common divisor of the values of the two polynomials at a suitable integer.
引用
收藏
页码:446 / 450
页数:5
相关论文
共 50 条
  • [1] Estimating the greatest common divisor of the value of two polynomials
    Frenkel, Peter E.
    Zabradi, Gergely
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (09) : 2543 - 2554
  • [2] On the greatest common divisor of two univariate polynomials, II
    Schinzel, A
    ACTA ARITHMETICA, 2001, 98 (01) : 95 - 106
  • [3] On the greatest common divisor of two univariate polynomials, I
    Schinzel, A
    PANORAMA IN NUMBER THEORY OR THE VIEW FROM BAKER'S GARDEN, 2002, : 337 - 352
  • [4] GREATEST COMMON DIVISOR OF SEVERAL POLYNOMIALS
    BARNETT, S
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 70 (SEP): : 263 - +
  • [5] The calculation of the degree of an approximate greatest common divisor of two polynomials
    Winkler, Joab R.
    Lao, Xin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (06) : 1587 - 1603
  • [6] Two resultant based methods computing the greatest common divisor of two polynomials
    Triantafyllou, D
    Mitrouli, A
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2005, 3401 : 519 - 526
  • [7] Nearest common root of polynomials, approximate greatest common divisor and the structured singular value
    Halikias, G.
    Galanis, G.
    Karcanias, N.
    Milonidis, E.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2013, 30 (04) : 423 - 442
  • [8] The Numerical Greatest Common Divisor of Univariate Polynomials
    Zeng, Zhonggang
    RANDOMIZATION, RELAXATION, AND COMPLEXITY ON POLYNOMIAL EQUATION SOLVING, 2011, 556 : 187 - 217
  • [9] CALCULATION OF THE GREATEST COMMON DIVISOR OF PERTURBED POLYNOMIALS
    Zitko, Jan
    Elias, Jan
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 16, 2013, : 215 - 222
  • [10] The computation of the degree of an approximate greatest common divisor of two Bernstein polynomials
    Bourne, Martin
    Winkler, Joab R.
    Yi, Su
    APPLIED NUMERICAL MATHEMATICS, 2017, 111 : 17 - 35