Automatic Construction of Benchmarks for RDF Keyword Search Systems Evaluation

被引:2
|
作者
Neves, Angelo Batista [1 ]
Paes Leme, Luiz Andre P. [2 ]
Izquierdo, Yenier Torres [1 ]
Casanova, Marco Antonio [1 ]
机构
[1] Pontifical Catholic Univ Rio de Janeiro, Rio De Janeiro, RJ, Brazil
[2] Univ Fed Fluminense, Niteroi, RJ, Brazil
关键词
Benchmark; Keyword Search; Resource Description Framework (RDF); Offline; Computation; QUERY;
D O I
10.5220/0010519401260137
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Keyword search systems provide users with a friendly alternative to access Resource Description Framework (RDF) datasets. The evaluation of such systems requires adequate benchmarks, consisting of RDF datasets and keyword queries, with their correct answers. However, the sets of correct answers such benchmarks provide for each query are often incomplete, mostly because they are manually built with experts' help. The central contribution of this paper is an offline method that helps build RDF keyword search benchmarks automatically, leading to more complete sets of correct answers, called solution generators. The paper focuses on computing sets of generators and describes heuristics that circumvent the combinatorial nature of the problem. The paper then describes five benchmarks, constructed with the proposed method and based on three real datasets, DBpedia, IMDb, and Mondial, and two synthetic datasets, LUBM and BSBM. Finally, the paper compares the constructed benchmarks with keyword search benchmarks published in the literature.
引用
收藏
页码:126 / 137
页数:12
相关论文
共 50 条
  • [1] Automatically Creating Benchmarks for RDF Keyword Search Evaluation
    Neves A.B.
    Leme L.A.P.P.
    Izquierdo Y.T.
    Jiménez J.G.
    Lopes G.R.
    Casanova M.A.
    [J]. SN Computer Science, 3 (4)
  • [2] Keyword Search over Federated RDF Systems
    Wang, Qing
    Peng, Peng
    Tong, Tianyao
    Tian, Zhen
    Qin, Zheng
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT II, 2020, 12113 : 613 - 622
  • [3] Optimizing Keyword Search Over Federated RDF Systems
    Li, Mingdao
    Peng, Peng
    Tian, Zhen
    Qin, Zheng
    Huang, Zheng
    Liu, Yi
    [J]. IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (03) : 918 - 935
  • [4] ANSWER GRAPH CONSTRUCTION FOR KEYWORD SEARCH ON GRAPH STRUCTURED(RDF) DATA
    Parthasarathy, K.
    Kumar, P. Sreenivasa
    Damien, Dominic
    [J]. KDIR 2010: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND INFORMATION RETRIEVAL, 2010, : 162 - 167
  • [5] RDF Keyword Search by Query Computation
    Ma, Zongmin
    Lin, Xiaoqing
    Yan, Li
    Zhao, Zhen
    [J]. JOURNAL OF DATABASE MANAGEMENT, 2018, 29 (04) : 1 - 27
  • [6] Diversified spatial keyword search on RDF data
    Zhi Cai
    Georgios Kalamatianos
    Georgios J. Fakas
    Nikos Mamoulis
    Dimitris Papadias
    [J]. The VLDB Journal, 2020, 29 : 1171 - 1189
  • [7] RDF Keyword Search Using Multiple Indexes
    Lin, Xiaoqing
    Zhang, Fu
    Wang, Danling
    Cheng, Jingwei
    [J]. FILOMAT, 2018, 32 (05) : 1861 - 1873
  • [8] Scalable Keyword Search on Large RDF Data
    Le, Wangchao
    Li, Feifei
    Kementsietsidis, Anastasios
    Duan, Songyun
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (11) : 2774 - 2788
  • [9] Diversified spatial keyword search on RDF data
    Cai, Zhi
    Kalamatianos, Georgios
    Fakas, Georgios J.
    Mamoulis, Nikos
    Papadias, Dimitris
    [J]. VLDB JOURNAL, 2020, 29 (05): : 1171 - 1189
  • [10] Keyword Search Over Probabilistic RDF Graphs
    Lian, Xiang
    Chen, Lei
    Huang, Zi
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2015, 27 (05) : 1246 - 1260