Nonlinear system identification using a cuckoo search optimized adaptive Hammerstein model

被引:94
|
作者
Gotmare, Akhilesh [1 ]
Patidar, Rohan [1 ]
George, Nithin V. [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Gandhinagar 382424, Gujarat, India
关键词
Hammerstein model; System identification; Particle swarm optimization algorithm; Differential evolution; Cuckoo search algorithm; PARAMETER-ESTIMATION; ALGORITHM; FILTER;
D O I
10.1016/j.eswa.2014.10.040
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An attempt has been made in this paper to model a nonlinear system using a Hammerstein model. The Hammerstein model considered in this paper is a functional link artificial neural network (FLANN) in cascade with an adaptive infinite impulse response (IIR) filter. In order to avoid local optima issues caused by conventional gradient descent training strategies, the model has been trained using a cuckoo search algorithm (CSA), which is a recently proposed stochastic algorithm. Modeling accuracy of the proposed scheme has been compared with that obtained using other popular evolutionary computing algorithms for the Hammerstein model. Enhanced modeling capability of the CSA based scheme is evident from the simulation results. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2538 / 2546
页数:9
相关论文
共 50 条
  • [1] NONLINEAR-SYSTEM IDENTIFICATION USING THE HAMMERSTEIN MODEL
    BILLINGS, SA
    FAKHOURI, SY
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1979, 10 (05) : 567 - 578
  • [2] Nonlinear system identification based on ANFIS-Hammerstein model using Gravitational search algorithm
    Erik Cuevas
    Primitivo Díaz
    Omar Avalos
    Daniel Zaldívar
    Marco Pérez-Cisneros
    [J]. Applied Intelligence, 2018, 48 : 182 - 203
  • [3] Nonlinear system identification based on ANFIS-Hammerstein model using Gravitational search algorithm
    Cuevas, Erik
    Diaz, Primitivo
    Avalos, Omar
    Zaldivar, Daniel
    Perez-Cisneros, Marco
    [J]. APPLIED INTELLIGENCE, 2018, 48 (01) : 182 - 203
  • [4] System identification using Hammerstein model optimized with differential evolution algorithm
    Mete, Selcuk
    Ozer, Saban
    Zorlu, Hasan
    [J]. AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2016, 70 (12) : 1667 - 1675
  • [5] An Optimized Face Recognition System Using Cuckoo Search
    Malhotra, Preeti
    Kumar, Dinesh
    [J]. JOURNAL OF INTELLIGENT SYSTEMS, 2019, 28 (02) : 321 - 332
  • [6] Nonlinear System Identification Using Adaptive Volterra Model Optimized with Sine Cosine Algorithm
    Sandeep Singh
    Tarun Kumar Rawat
    Alaknanda Ashok
    [J]. Arabian Journal for Science and Engineering, 2022, 47 : 14411 - 14422
  • [7] Nonlinear System Identification Using Adaptive Volterra Model Optimized with Sine Cosine Algorithm
    Singh, Sandeep
    Rawat, Tarun Kumar
    Ashok, Alaknanda
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (11) : 14411 - 14422
  • [8] Nonlinear System Identification of Hammerstein-Wiener Model Using AWPSO
    Talaie, Sharareh
    Shoorehdeli, Mahdi Aliyari
    Shahmohamadi, Leila
    [J]. 2014 IRANIAN CONFERENCE ON INTELLIGENT SYSTEMS (ICIS), 2014,
  • [9] Nonlinear system identification using butterfly optimisation algorithm and Hammerstein model
    Singh, Sandeep
    Rawat, Tarun Kumar
    Ashok, Alaknanda
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2023, 42 (02) : 171 - 179
  • [10] SYSTEM IDENTIFICATION USING HAMMERSTEIN MODEL
    Mete, Selcuk
    Ozer, Saban
    Zorlu, Hasan
    [J]. 2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, : 1303 - 1306