Generalized synchronization of continuous dynamical system

被引:3
|
作者
Zhang Gang
Liu Zeng-rong [1 ]
Ma Zhong-jun
机构
[1] Shanghai Univ, Inst Syst Biol, Shanghai 200444, Peoples R China
[2] Shijiazhuang Coll, Dept Math, Shijiazhuang 050035, Peoples R China
[3] Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
generalized synchronization; differentiable generalized synchronization; Liapunov function;
D O I
10.1007/s10483-007-0203-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalized synchronization between two continuous dynamical systems is discussed. By exploring the Liapunov stability theory and constructing appropriately unidirectional coupling term, a sufficient condition for determining the generalized synchronization between continuous systems is proved. Two examples are used to show the effectiveness of this result.
引用
收藏
页码:157 / 162
页数:6
相关论文
共 50 条
  • [1] Generalized synchronization of continuous dynamical system
    张刚
    刘曾荣
    马忠军
    Applied Mathematics and Mechanics(English Edition), 2007, (02) : 157 - 162
  • [2] Generalized synchronization of continuous dynamical system
    Gang Zhang
    Zeng-rong Liu
    Zhong-jun Ma
    Applied Mathematics and Mechanics, 2007, 28 : 157 - 162
  • [3] On Λ −ϕ generalized synchronization of chaotic dynamical systems in continuous–time
    A. Ouannas
    M.M. Al-sawalha
    The European Physical Journal Special Topics, 2016, 225 : 187 - 196
  • [4] On Inverse Generalized Synchronization of Continuous Chaotic Dynamical Systems
    Ouannas A.
    Odibat Z.
    International Journal of Applied and Computational Mathematics, 2016, 2 (1) : 1 - 11
  • [5] Generalized synchronization of continuous chaotic system
    Wang, YW
    Guan, ZH
    CHAOS SOLITONS & FRACTALS, 2006, 27 (01) : 97 - 101
  • [6] On Λ - φ generalized synchronization of chaotic dynamical systems in continuous-time
    Ouannas, A.
    Al-sawalha, M. M.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2016, 225 (01): : 187 - 196
  • [7] Generalized lag-synchronization of continuous chaotic system
    Huang, Yuehua
    Wang, Yan-Wu
    Xiao, Jiang-Wen
    CHAOS SOLITONS & FRACTALS, 2009, 40 (02) : 766 - 770
  • [8] Dynamical inference: Where phase synchronization and generalized synchronization meet
    Stankovski, Tomislav
    McClintock, Peter V. E.
    Stefanovska, Aneta
    PHYSICAL REVIEW E, 2014, 89 (06)
  • [9] Dynamical analysis, linear feedback control and synchronization of a generalized Lotka-Volterra system
    Elsadany A.A.
    Matouk A.E.
    Abdelwahab A.G.
    Abdallah H.S.
    International Journal of Dynamics and Control, 2018, 6 (01) : 328 - 338
  • [10] Impulsive generalized function synchronization of complex dynamical networks
    Zhang, Qunjiao
    Chen, Juan
    Wan, Li
    PHYSICS LETTERS A, 2013, 377 (39) : 2754 - 2760