Optimal reinsurance and dividend distribution policies in the Cramer-Lundberg model

被引:155
|
作者
Azcue, P [1 ]
Muler, N [1 ]
机构
[1] Univ Torcuato Di Tella, Dept Matemat & Estadist, RA-1428 Buenos Aires, DF, Argentina
关键词
Cramer-Lundberg process; dividend payouts; insurance; reinsurance; Hamilton-Jacobi-Bellman equation; viscosity solution; risk control; dynamic programming principle;
D O I
10.1111/j.0960-1627.2005.00220.x
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We consider that the reserve of an insurance company follows a Cramer-Lundberg process. The management has the possibility of controlling the risk by means of reinsurance. Our aim is to find a dynamic choice of both the reinsurance policy and the dividend distribution strategy that maximizes the cumulative expected discounted dividend payouts. We study the usual cases of excess-of-loss and proportional reinsurance as well as the family of all possible reinsurance contracts. We characterize the optimal value function as the smallest viscosity solution of the associated Hamilton-Jacobi-Bellman equation and we prove that there exists an optimal band strategy. We also describe the optimal value function for small initial reserves.
引用
收藏
页码:261 / 308
页数:48
相关论文
共 50 条
  • [1] Optimal Reinsurance and Dividend Strategies with Capital Injections in Cramer-Lundberg Approximation Model
    Wu, Yidong
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (01) : 193 - 210
  • [2] Optimal dividend strategies in a Cramer-Lundberg model with capital injections
    Kulenko, Natalie
    Schmidli, Hanspeter
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2008, 43 (02): : 270 - 278
  • [3] Optimal reinsurance for Gerber-Shiu functions in the Cramer-Lundberg model
    Preischl, M.
    Thonhauser, S.
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2019, 87 : 82 - 91
  • [4] Optimal Dividend and Capital Injection Strategies in the Cramer-Lundberg Risk Model
    Li, Yan
    Liu, Guoxin
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [5] Optimal investment and reinsurance policies for the Cramer-Lundberg risk model under monotone mean-variance preference
    Li, Bohan
    Guo, Junyi
    Tian, Linlin
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2024, 97 (06) : 1296 - 1310
  • [6] Optimal constrained investment in the Cramer-Lundberg model
    Belkina, Tatiana
    Hipp, Christian
    Luo, Shangzhen
    Taksar, Michael
    [J]. SCANDINAVIAN ACTUARIAL JOURNAL, 2014, 2014 (05) : 383 - 404
  • [7] Optimal dividend strategies with time-inconsistent preferences and transaction costs in the Cramer-Lundberg model
    Chen, Shumin
    Zeng, Yan
    Hao, Zhifeng
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2017, 74 : 31 - 45
  • [8] Singular optimal dividend control for the regime-switching Cramer-Lundberg model with credit and debit interest
    Zhu, Jinxia
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 257 : 212 - 239
  • [9] Ito calculus for Cramer-Lundberg model
    Akahori, Jiro
    Constantinescu, Corina
    Miyagi, Kei
    [J]. JSIAM LETTERS, 2020, 12 : 25 - 28
  • [10] The Cramer-Lundberg model with a fluctuating number of clients
    Braunsteins, Peter
    Mandjes, Michel
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2023, 112 : 1 - 22