A Bayesian approach to extreme value estimation in operational risk modeling

被引:2
|
作者
Ergashev, Bakhodir [1 ]
Mittnik, Stefan [2 ,3 ]
Sekeris, Evan [4 ]
机构
[1] Fed Reserve Bank Richmond, Charlotte Off, Charlotte, NC 28230 USA
[2] Univ Munich, Dept Stat, D-80799 Munich, Germany
[3] Univ Munich, Ctr Quantitat Risk Anal, D-80799 Munich, Germany
[4] Aon, Columbia, MD 21046 USA
来源
JOURNAL OF OPERATIONAL RISK | 2013年 / 8卷 / 04期
关键词
GENERALIZED PARETO DISTRIBUTION; STABLE INDEX-ALPHA;
D O I
10.21314/JOP.2013.131
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We propose a new approach for estimating operational risk models under the loss distribution approach from historically observed losses. Our method is based on extreme value theory and, being Bayesian in nature, allows us to incorporate other external information about the unknown parameters by use of expert opinions via elicitation or external data sources. This additional information can play a crucial role in reducing the statistical uncertainty about both parameter and capital estimates in situations where observed data is insufficient to accurately estimate the tail behavior of the loss distribution. Challenges of and strategies for formulating suitable priors are discussed. A simulation study demonstrates the performance of the new approach.
引用
收藏
页码:55 / 81
页数:27
相关论文
共 50 条
  • [1] An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates
    Chavez-Demoulin, Valerie
    Embrechts, Paul
    Hofert, Marius
    [J]. JOURNAL OF RISK AND INSURANCE, 2016, 83 (03) : 735 - 776
  • [2] A semiparametric Bayesian approach to extreme value estimation
    do Nascimento, Fernando Ferraz
    Gamerman, Dani
    Lopes, Hedibert Freitas
    [J]. STATISTICS AND COMPUTING, 2012, 22 (02) : 661 - 675
  • [3] A semiparametric Bayesian approach to extreme value estimation
    Fernando Ferraz do Nascimento
    Dani Gamerman
    Hedibert Freitas Lopes
    [J]. Statistics and Computing, 2012, 22 : 661 - 675
  • [4] A Bayesian Approach to Extreme Value Estimation in Modelling Rainfall Data
    Musakkal, Nur Farhanah Kahal
    Na, Chin Su
    Gabda, Darmesah
    [J]. 4TH INNOVATION AND ANALYTICS CONFERENCE & EXHIBITION (IACE 2019), 2019, 2138
  • [5] Multivariate estimation for operational risk with judicious use of extreme value theory
    El-Gamal, Mahmoud
    Inanoglu, Hulusi
    Stengel, Mitch
    [J]. JOURNAL OF OPERATIONAL RISK, 2007, 2 (01): : 21 - 54
  • [6] Modeling operational risk with Bayesian networks
    Cowell, R. G.
    Verrall, R. J.
    Yoon, Y. K.
    [J]. JOURNAL OF RISK AND INSURANCE, 2007, 74 (04) : 795 - 827
  • [7] Modeling macroeconomic effects and expert judgments in operational risk: a Bayesian approach
    Santos, Holger Capa
    Kratz, Marie
    Munoz, Franklin Mosquera
    [J]. JOURNAL OF OPERATIONAL RISK, 2012, 7 (04): : 3 - 23
  • [8] A Bayesian Networks approach to Operational Risk
    Aquaro, V.
    Bardoscia, M.
    Bellotti, R.
    Consiglio, A.
    De Carlo, F.
    Ferri, G.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (08) : 1721 - 1728
  • [9] Clinical and Operational Risk: A Bayesian Approach
    Chiara Cornalba
    [J]. Methodology and Computing in Applied Probability, 2009, 11 : 47 - 63
  • [10] Clinical and Operational Risk: A Bayesian Approach
    Cornalba, Chiara
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2009, 11 (01) : 47 - 63