RANKING-BASED DIFFERENTIAL EVOLUTION FOR LARGE-SCALE CONTINUOUS OPTIMIZATION

被引:2
|
作者
Guo, Li [1 ]
Li, Xiang [2 ]
Gong, Wenyin [2 ]
机构
[1] China Univ Geosci, Sch Econ & Management, Wuhan 430074, Hubei, Peoples R China
[2] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Hubei, Peoples R China
关键词
Differential evolution; ranking-based mutation; vector selection; largescale continuous optimization; ALGORITHM;
D O I
10.4149/cai_2018_1_49
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Large-scale continuous optimization has gained considerable attention in recent years. Differential evolution (DE) is a simple yet efficient global numerical optimization algorithm, which has been successfully used in diverse fields. Generally, the vectors in the DE mutation operators are chosen randomly from the population. In this paper, we employ the ranking-based mutation operators for the DE algorithm to improve DE's performance. In the ranking-based mutation operators, the vectors are selected according to their rankings in the current population. The ranking-based mutation operators are general, and they are integrated into the original DE algorithm, GODE, and GaDE to verify the enhanced performance. Experiments have been conducted on the large-scale continuous optimization problems. The results indicate that the ranking-based mutation operators are able to enhance the overall performance of DE, GODE, and GaDE in the large-scale continuous optimization problems.
引用
收藏
页码:49 / 75
页数:27
相关论文
共 50 条
  • [1] Ranking-based biased learning swarm optimizer for large-scale optimization
    Deng, Hanbo
    Peng, Lizhi
    Zhang, Haibo
    Yang, Bo
    Chen, Zhenxiang
    [J]. INFORMATION SCIENCES, 2019, 493 : 120 - 137
  • [2] Scalability of generalized adaptive differential evolution for large-scale continuous optimization
    Yang, Zhenyu
    Tang, Ke
    Yao, Xin
    [J]. SOFT COMPUTING, 2011, 15 (11) : 2141 - 2155
  • [3] Scalability of generalized adaptive differential evolution for large-scale continuous optimization
    Zhenyu Yang
    Ke Tang
    Xin Yao
    [J]. Soft Computing, 2011, 15 : 2141 - 2155
  • [4] Proximity ranking-based multimodal differential evolution
    Zhang, Junna
    Chen, Degang
    Yang, Qiang
    Wang, Yiqiao
    Liu, Dong
    Jeon, Sang-Woon
    Zhang, Jun
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2023, 78
  • [5] Differential Evolution With Ranking-Based Mutation Operators
    Gong, Wenyin
    Cai, Zhihua
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (06) : 2066 - 2081
  • [6] A Simple but Efficient Ranking-Based Differential Evolution
    Li, Jiayi
    Yang, Lin
    Yi, Junyan
    Yang, Haichuan
    Todo, Yuki
    Gao, Shangce
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (01): : 189 - 192
  • [7] Solving chemical dynamic optimization problems with ranking-based differential evolution algorithms
    Chen, Xu
    Du, Wenli
    Qian, Feng
    [J]. CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2016, 24 (11) : 1600 - 1608
  • [8] Solving chemical dynamic optimization problems with ranking-based differential evolution algorithms
    Xu Chen
    Wenli Du
    Feng Qian
    [J]. Chinese Journal of Chemical Engineering, 2016, 24 (11) : 1600 - 1608
  • [9] Differential evolution using cooperative ranking-based mutation operators for constrained optimization
    Xu, Bin
    Zhang, Haifeng
    Zhang, Meihua
    Liu, Lilan
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2019, 49 : 206 - 219
  • [10] Ranking-based hierarchical random mutation in differential evolution
    Zhong, Xuxu
    Duan, Meijun
    Cheng, Peng
    [J]. PLOS ONE, 2021, 16 (02):