van der Waals Heterostructures with High Accuracy Rotational Alignment

被引:502
|
作者
Kim, Kyounghwan [1 ]
Yankowitz, Matthew [2 ]
Fallahazad, Babak [1 ]
Kang, Sangwoo [1 ]
Movva, Hema C. P. [1 ]
Huang, Shengqiang [2 ]
Larentis, Stefano [1 ]
Corbet, Chris M. [1 ]
Taniguchi, Takashi [3 ]
Watanabe, Kenji [3 ]
Banerjee, Sanjay K. [1 ]
LeRoy, Brian J. [2 ]
Tutuc, Emanuel [1 ]
机构
[1] Univ Texas Austin, Dept Elect & Comp Engn, Microelect Res Ctr, Austin, TX 78758 USA
[2] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
[3] Natl Inst Mat Sci, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
基金
美国国家科学基金会;
关键词
Two-dimensional; heterostructure; graphene; boron-nitride; resonant tunneling; SCANNING-TUNNELING-MICROSCOPY; BILAYER GRAPHENE; BORON-NITRIDE; DIRAC FERMIONS; SUPERLATTICES; SPECTROSCOPY; CONDUCTANCE; SURFACE;
D O I
10.1021/acs.nanolett.5b05263
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We describe the realization of van der Waals (vdW) heterostructures with accurate rotational alignment of individual layer crystal axes. We illustrate the approach by demonstrating a Bernal-stacked bilayer graphene formed using successive transfers of monolayer graphene flakes. The Raman spectra of this artificial bilayer graphene possess a wide 2D band, which is best fit by four Lorentzians, consistent with Bernal stacking. Scanning tunneling microscopy reveals no moire pattern on the artificial bilayer graphene, and tunneling spectroscopy as a function of gate voltage reveals a constant density of states, also in agreement with Bernal, stacking. In addition, electron transport probed in dual-gated samples reveals a band gap opening as a function of transverse electric field. To illustrate the applicability of this technique to realize vdW heterostructuctures in which the functionality is critically dependent on rotational alignment, we demonstrate resonant tunneling double bilayer graphene heterostructures separated by hexagonal boron-nitride dielectric.
引用
收藏
页码:1989 / 1995
页数:7
相关论文
共 50 条
  • [1] van der Waals Heterostructures with High Accuracy Rotational Alignment (vol 16, pg 1989, 2016)
    Kim, Kyounghwan
    Yankowitz, Matthew
    Fallahazad, Babak
    Kang, Sangwoo
    Movva, Hema C. P.
    Huang, Shengqiang
    Larentis, Stefano
    Corbet, Chris M.
    Taniguchi, Takashi
    Watanabe, Kenji
    Banerjee, Sanjay K.
    LeRoy, Brian J.
    Tutuc, Emanuel
    NANO LETTERS, 2016, 16 (09) : 5968 - 5968
  • [2] Fabricating van der Waals Heterostructures with Precise Rotational Alignment
    Boddison-Chouinard, Justin
    Plumadore, Ryan
    Luican-Mayer, Adina
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2019, (149):
  • [3] Van der Waals heterostructures
    Barnes, Natalie
    NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [4] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    NATURE, 2013, 499 (7459) : 419 - 425
  • [5] Van der Waals heterostructures
    Nature Reviews Methods Primers, 2
  • [6] Van der Waals heterostructures
    A. K. Geim
    I. V. Grigorieva
    Nature, 2013, 499 : 419 - 425
  • [7] Van der Waals heterostructures and devices
    Yuan Liu
    Nathan O. Weiss
    Xidong Duan
    Hung-Chieh Cheng
    Yu Huang
    Xiangfeng Duan
    Nature Reviews Materials, 1
  • [8] Photovoltaics in Van der Waals Heterostructures
    Furchi, Marco M.
    Zechmeister, Armin A.
    Hoeller, Florian
    Wachter, Stefan
    Pospischil, Andreas
    Mueller, Thomas
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2017, 23 (01) : 106 - 116
  • [9] Frustrated van der Waals heterostructures
    Tawfik, Sherif Abdulkader
    Nanoscale, 2024, 16 (44) : 20484 - 20488
  • [10] Polaritons in Van der Waals Heterostructures
    Guo, Xiangdong
    Lyu, Wei
    Chen, Tinghan
    Luo, Yang
    Wu, Chenchen
    Yang, Bei
    Sun, Zhipei
    de Abajo, F. Javier Garcia
    Yang, Xiaoxia
    Dai, Qing
    ADVANCED MATERIALS, 2023, 35 (17)