Database-friendly random projections: Johnson-Lindenstrauss with binary coins

被引:752
|
作者
Achlioptas, D [1 ]
机构
[1] Microsoft Res, Redmond, WA 98052 USA
关键词
D O I
10.1016/S0022-0000(03)00025-4
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A classic result of Johnson and Lindenstrauss asserts that any set of n points in d-dimensional Euclidean space can be embedded into k-dimensional Euclidean space-where k is logarithmic in n and independent of d-so that all pairwise distances are maintained within an arbitrarily small factor. All known constructions of such embeddings involve projecting the n points onto a spherically random k-dimensional hyperplane through the origin. We give two constructions of such embeddings with the property that all elements of the projection matrix belong in {-1,0,+1}. Such constructions are particularly well suited for database environments, as the computation of the embedding reduces to evaluating a single aggregate over k random partitions of the attributes. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:671 / 687
页数:17
相关论文
共 3 条
  • [1] Machine learning friendly set version of Johnson-Lindenstrauss lemma
    Klopotek, Mieczyslaw A.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2020, 62 (05) : 1961 - 2009
  • [2] Tuning Database-Friendly Random Projection Matrices for Improved Distance Preservation on Specific Data
    Lopez-Sanchez, Daniel
    de Bodt, Cyril
    Lee, John A.
    Arrieta, Angelica Gonzalez
    Corchado, Juan M.
    APPLIED INTELLIGENCE, 2022, 52 (05) : 4927 - 4939
  • [3] Tuning Database-Friendly Random Projection Matrices for Improved Distance Preservation on Specific Data
    Daniel López-Sánchez
    Cyril de Bodt
    John A. Lee
    Angélica González Arrieta
    Juan M. Corchado
    Applied Intelligence, 2022, 52 : 4927 - 4939