Solutions for Discrete Periodic Schrodinger Equations with Spectrum 0

被引:42
|
作者
Yang, Minbo [1 ,2 ]
Chen, Wenxiong [1 ]
Ding, Yanheng [1 ]
机构
[1] Chinese Acad Sci, AMSS, Inst Math, Beijing 100190, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
关键词
Discrete Schrodinger equation; Standing waves; Nonlinear lattices; GAP SOLITONS; EXCITATION; SEQUENCES; EXISTENCE;
D O I
10.1007/s10440-009-9521-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the discrete nonlinear equation -Delta u(n) + epsilon(n)u(n) - omega u(n) = sigma chi(n)g(n)(u(n))u(n), where sigma = +/-1, Delta u(n) = u(n+1) + u(n-1) - 2u(n) is the discrete Laplacian in one spatial dimension. The sequences epsilon(n) and chi(n) are assumed to be N-periodic in n, i.e. epsilon(n+N) = epsilon(n) and chi(n+N) = chi(n). We prove the existence of solutions in l(2) for this equation with. a lower edge of a finite spectral gap and the nonlinearities satisfying very general superlinear assumptions.
引用
收藏
页码:1475 / 1488
页数:14
相关论文
共 50 条
  • [1] Solutions for Discrete Periodic Schrödinger Equations with Spectrum 0
    Minbo Yang
    Wenxiong Chen
    Yanheng Ding
    Acta Applicandae Mathematicae, 2010, 110 : 1475 - 1488
  • [2] Multiple solutions for discrete periodic nonlinear Schrodinger equations
    Sun, Jijiang
    Ma, Shiwang
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (02)
  • [3] Multibump solutions for discrete periodic nonlinear Schrodinger equations
    Ma, Shiwang
    Wang, Zhi-Qiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (05): : 1413 - 1442
  • [4] Ground state solutions for periodic Discrete nonlinear Schrodinger equations
    Xu, Xionghui
    Sun, Jijiang
    AIMS MATHEMATICS, 2021, 6 (12): : 13057 - 13071
  • [5] NEW CONDITIONS ON SOLUTIONS FOR PERIODIC SCHRODINGER EQUATIONS WITH SPECTRUM ZERO
    Qin, Dongdong
    Tang, Xianhua
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (04): : 977 - 993
  • [6] MULTIPLE SOLUTIONS FOR PERIODIC SCHRODINGER EQUATIONS WITH SPECTRUM POINT ZERO
    Qin, Dongdong
    Liao, Fangfang
    Chen, Yi
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (04): : 1185 - 1202
  • [7] Non-periodic discrete Schrodinger equations: ground state solutions
    Chen, Guanwei
    Schechter, Martin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [8] Ground state solutions of the periodic discrete coupled nonlinear Schrodinger equations
    Huang, Meihua
    Zhou, Zhan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (08) : 1682 - 1695
  • [9] Discrete solitons for periodic discrete nonlinear Schrodinger equations
    Mai, Ali
    Zhou, Zhan
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 222 : 34 - 41
  • [10] Ground State Solutions for the Periodic Discrete Nonlinear Schrodinger Equations with Superlinear Nonlinearities
    Mai, Ali
    Zhou, Zhan
    ABSTRACT AND APPLIED ANALYSIS, 2013,