UNIFORM LOCAL AMENABILITY IMPLIES PROPERTY A

被引:3
|
作者
Elek, Gabor [1 ]
机构
[1] Univ Lancaster, Fylde Coll, Dept Math & Stat, Lancaster LA1 4YF, England
关键词
D O I
10.1090/proc/15387
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this short note we answer a query of Brodzki, Niblo, Spakula, Willett and Wright [J. Noncommut. Geom. 7 (2013), pp. 583-603] by showing that all bounded degree uniformly locally amenable graphs have Property A. For the second result of the note recall that Kaiser [Trans. Amer. Math. Soc. 372 (2019), pp. 2855-2874] proved that if F is a finitely generated group and {H-i}(i=1)(infinity) is a Farber sequence of finite index subgroups, then the associated Schreier graph sequence is of Property A if and only if the group is amenable. We show however, that there exist a non-amenable group and a nested sequence of finite index subgroups {H-i}(i=1)(infinity) such that boolean AND H-i = {e(Gamma)}, and the associated Schreier graph sequence is of Property A.
引用
收藏
页码:2573 / 2577
页数:5
相关论文
共 50 条
  • [1] Uniform local amenability
    Brodzki, Jacek
    Niblo, Graham A.
    Spakula, Jan
    Willett, Rufus
    Wright, Nick
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2013, 7 (02) : 583 - 603
  • [2] UNIFORM SMOOTHNESS IMPLIES SUPER-NORMAL STRUCTURE PROPERTY
    KHAMSI, MA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (11) : 1063 - 1069
  • [3] Characterisations for uniform amenability
    Zhu, Jingming
    Zhang, Jiawen
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2023, 34 (06): : 1318 - 1328
  • [4] Amenability and the Liouville property
    Kaimanovich, VA
    ISRAEL JOURNAL OF MATHEMATICS, 2005, 149 (1) : 45 - 85
  • [5] Amenability and the Liouville property
    Vadim A. Kaimanovich
    Israel Journal of Mathematics, 2005, 149 : 45 - 85
  • [6] The Uniform Effros Property and Local Homogeneity
    Macias, Sergio
    MATHEMATICA SLOVACA, 2023, 73 (04) : 1013 - 1022
  • [7] The operator amenability of uniform algebras
    Runde, V
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2003, 46 (04): : 632 - 634
  • [8] Amenability and uniform Roe algebras
    Ara, Pere
    Li, Kang
    Lledo, Fernando
    Wu, Jianchao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 459 (02) : 686 - 716
  • [9] Uniform non-amenability
    Arzhantseva, GN
    Burillo, J
    Lustig, M
    Reeves, L
    Short, H
    Ventura, E
    ADVANCES IN MATHEMATICS, 2005, 197 (02) : 499 - 522
  • [10] THE WEAK-A∞ PROPERTY OF HARMONIC AND p-HARMONIC MEASURES IMPLIES UNIFORM RECTIFIABILITY
    Hofmann, Steve
    Le, Phi
    Maria Martell, Jose
    Nystrom, Kaj
    ANALYSIS & PDE, 2017, 10 (03): : 513 - 558