Perron eigenvector of the Tsetlin matrix

被引:3
|
作者
Bapat, RB [1 ]
机构
[1] Indian Stat Inst, Delhi Ctr, New Delhi 110016, India
关键词
move-to-front scheme; Tsetlin library; Perron eigenvector; Perron complement; self-organizing schemes; Markov chain;
D O I
10.1016/S0024-3795(01)00490-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the move-to-position k linear search scheme where the sequence of record requests is a Markov chain. Formulas are derived for the stationary distribution of the permutation chain for k = 1, 2, n - 1 and n, where n is the number of records. Certain identities for the Perron complement are established in the process. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:3 / 16
页数:14
相关论文
共 50 条
  • [1] ON THE EFFECT OF THE PERTURBATION OF A NONNEGATIVE MATRIX ON ITS PERRON EIGENVECTOR
    ELSNER, L
    JOHNSON, CR
    NEUMANN, M
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1982, 32 (01) : 99 - 109
  • [2] UNCOUPLING THE PERRON EIGENVECTOR PROBLEM
    MEYER, CD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 114 : 69 - 94
  • [3] How to make the Perron eigenvector simple
    Vladimir Yu. Protasov
    Calcolo, 2019, 56
  • [4] How to make the Perron eigenvector simple
    Protasov, Vladimir Yu
    CALCOLO, 2019, 56 (02)
  • [5] Distributed Computation of the Perron-Frobenius Eigenvector
    Yang, Mu
    Tang, Choon Yik
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 1883 - 1888
  • [6] Asymptotics of the Perron eigenvalue and eigenvector using max-algebra
    Akian, M
    Bapat, R
    Gaubert, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (11): : 927 - 932
  • [7] A Markov chain representation of the normalized Perron-Frobenius eigenvector
    Cerf, Raphael
    Dalmau, Joseba
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2017, 22
  • [8] The positive eigenvector of a positive matrix
    Yang, Kung-Wei
    MATHEMATICAL GAZETTE, 2015, 99 (546): : 523 - 525
  • [9] The eigenvector variety of a matrix pencil
    Ringel, Claus Michael
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 531 : 447 - 458
  • [10] Application of matrix eigenvalue and eigenvector
    Deng, Jixia
    PROCEEDINGS OF THE 2016 5TH INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND COMPUTER SCIENCE, 2016, 80 : 167 - 170