Multi-Scale Flexible Fitting of Proteins to Cryo-EM Density Maps at Medium Resolution

被引:13
|
作者
Kulik, Marta [1 ]
Mori, Takaharu [1 ]
Sugita, Yuji [1 ,2 ,3 ,4 ]
机构
[1] RIKEN, Theoret Mol Sci Lab, Cluster Pioneering Res, Wako, Saitama, Japan
[2] RIKEN, Ctr Computat Sci, Kobe, Hyogo, Japan
[3] RIKEN, Ctr Biosyst Dynam Res, Kobe, Hyogo, Japan
[4] Univ Warsaw, Dept Chem, Biol & Chem Res Ctr, Ul Zwirki i Wigury 101, PL-02089 Warsaw, Poland
关键词
flexible fitting; multi-scale methods; replica exchange; molecular dynamics simulation; cryo-EM density map; all-atom force field; coarse-grained force field; targeted molecular dynamics;
D O I
10.3389/fmolb.2021.631854
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Structure determination using cryo-electron microscopy (cryo-EM) medium-resolution density maps is often facilitated by flexible fitting. Avoiding overfitting, adjusting force constants driving the structure to the density map, and emulating complex conformational transitions are major concerns in the fitting. To address them, we develop a new method based on a three-step multi-scale protocol. First, flexible fitting molecular dynamics (MD) simulations with coarse-grained structure-based force field and replica-exchange scheme between different force constants replicas are performed. Second, fitted C alpha atom positions guide the all-atom structure in targeted MD. Finally, the all-atom flexible fitting refinement in implicit solvent adjusts the positions of the side chains in the density map. Final models obtained via the multi-scale protocol are significantly better resolved and more reliable in comparison with long all-atom flexible fitting simulations. The protocol is useful for multi-domain systems with intricate structural transitions as it preserves the secondary structure of single domains.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Flexible Fitting of Atomic Models into Cryo-EM Density Maps Guided by Helix Correspondences
    Dou, Hang
    Burrows, Derek W.
    Baker, Matthew L.
    Jul, Tao
    BIOPHYSICAL JOURNAL, 2017, 112 (12) : 2479 - 2493
  • [2] ANALYSES OF SUBNANOMETER RESOLUTION CRYO-EM DENSITY MAPS
    Baker, Matthew L.
    Baker, Mariah R.
    Hryc, Corey F.
    DiMaio, Frank
    METHODS IN ENZYMOLOGY, VOL 483: CRYO-EM, PART C: ANALYSES, INTERPRETATION, AND CASE STUDIES, 2010, 483 : 1 - 29
  • [3] Quantifying the local resolution of cryo-EM density maps
    Kucukelbir A.
    Sigworth F.J.
    Tagare H.D.
    Nature Methods, 2014, 11 (1) : 63 - 65
  • [4] Towards a Multicomponent Cryo-EM Density Flexible Fitting Tool
    Ramon Lopez-Blanco, Jose
    Ritchie, David
    Chacon, Pablo
    BIOPHYSICAL JOURNAL, 2017, 112 (03) : 575A - 575A
  • [5] A Pattern Recognition Tool for Medium-Resolution Cryo-EM Density Maps and Low-Resolution Cryo-ET Density Maps
    Haslam, Devin
    Sazzed, Salim
    Wriggers, Willy
    Kovcas, Julio
    Song, Junha
    Auer, Manfred
    He, Jing
    BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2018, 2018, 10847 : 233 - 238
  • [6] Fitting low-resolution cryo-EM maps of proteins using constrained geometric simulations
    Jolley, Craig C.
    Wells, Stephen A.
    Frornme, Petra
    Thorpe, M. F.
    BIOPHYSICAL JOURNAL, 2008, 94 (05) : 1613 - 1621
  • [7] Defining the limits and reliability of rigid-body fitting in cryo-EM maps using multi-scale image pyramids
    van Zundert, G. C. P.
    Bonvin, A. M. J. J.
    JOURNAL OF STRUCTURAL BIOLOGY, 2016, 195 (02) : 252 - 258
  • [8] A New Algorithm for Improving the Resolution of Cryo-EM Density Maps
    Hirsch, Michael
    Schoelkopf, Bernhard
    Habeck, Michael
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, PROCEEDINGS, 2010, 6044 : 174 - 188
  • [9] Density modification of cryo-EM maps
    Terwilliger, Thomas C.
    Sobolev, Oleg V.
    Afonine, Pavel V.
    Adams, Paul D.
    Read, Randy J.
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2020, 76 : 912 - 925
  • [10] Automatic Detection of Beta-barrel from Medium Resolution Cryo-EM Density Maps
    Si, Dong
    PROCEEDINGS OF THE 7TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2016, : 156 - 164