Optimal code rates for the Lorentzian channel: Shannon codes and LDPC codes

被引:11
|
作者
Ryan, WE [1 ]
Wang, F
Wood, R
Li, Y
机构
[1] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA
[2] Japan Ltd, Hitachi Global Storage Technol, Kanagawa 2568510, Japan
基金
美国国家科学基金会;
关键词
achievable information rates; Lorentzian channel; low-density parity-check (LDPC) codes; optimal code rates; Shannon capacity;
D O I
10.1109/TMAG.2004.835670
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we take an information-theoretic approach to obtaining optimal code rates for error-control codes on a magnetic storage channel approximated by the Lorentzian channel. Code rate optimality is in the sense of maximizing the information-theoretic user density along a track. To arrive at such results, we compute the achievable information rates for the Lorentzian channel as a function of signal-to-noise ratio and channel density, and then use these information rate calculations to obtain optimal code rates and maximal linear user densities. We call such (hypothetical) optimal codes "Shannon codes" We then examine optimal code rates on a Lorentzian channel assuming low-density parity-check (LDPC) codes instead of Shannon codes. We employ as our tool extrinsic information transfer (EXIT) charts, which provide a simple way of determining the capacity limit (or decoding threshold) for an LDPC code. We demonstrate that the optimal rates for LDPC codes coincide with those of Shannon codes and, more important, that LDPC codes,are essentially capacity-achieving codes on the Lorentzian channel. Finally, we use the above results to estimate the optimal bit-aspect ratio, where optimality is in the sense of maximizing areal density.
引用
收藏
页码:3559 / 3565
页数:7
相关论文
共 50 条
  • [1] Optimal code rates for Lorentzian channel models
    Ryan, WE
    [J]. GLOBECOM'03: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-7, 2003, : 3386 - 3391
  • [2] Design of Optimal LDPC Code for the System of MDPSK Concatenated with LDPC Codes
    Zhu Ai-min
    Yao Sen-jie
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS, 2009, : 521 - 525
  • [3] Optimal regular LDPC codes for the binary erasure channel
    Rashidpour, M
    Shokrollahi, A
    Jamali, SH
    [J]. IEEE COMMUNICATIONS LETTERS, 2005, 9 (06) : 546 - 548
  • [4] Optimal Rate for Irregular LDPC Codes in Binary Erasure Channel
    Tavakoli, H.
    Attari, M. Ahmadian
    Peyghami, M. Reza
    [J]. 2011 IEEE INFORMATION THEORY WORKSHOP (ITW), 2011,
  • [5] Applications of LDPC codes to the wiretap channel
    Thangaraj, Andrew
    Dihidar, Souvik
    Calderbank, A. R.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (08) : 2933 - 2945
  • [6] Bilayer LDPC Codes for the Relay Channel
    Razaghi, Peyman
    Yu, Wei
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-12, 2006, : 1574 - 1579
  • [7] LDPC Codes for the Gaussian Wiretap Channel
    Klinc, Demijan
    Ha, Jeongseok
    McLaughlin, Steven W.
    Barros, Joao
    Kwak, Byung-Jae
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2011, 6 (03) : 532 - 540
  • [8] LDPC Codes for the Gaussian Wiretap Channel
    Klinc, Demijan
    Ha, Jeongseok
    McLaughlin, Steven W.
    Barros, Joao
    Kwak, Byung-Jae
    [J]. 2009 IEEE INFORMATION THEORY WORKSHOP (ITW 2009), 2009, : 95 - 99
  • [9] Optimal code rates for concatenated codes on a PR4-equalized magnetic recording channel
    Ryan, WE
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2000, 36 (06) : 4044 - 4049
  • [10] Generalized LDPC Codes with Convolutional Code Constraints
    Farooq, Muhammad Umar
    Moloudi, Saeedeh
    Lentmaier, Michael
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 479 - 484