Entropy on nonautonomous maps of the {fi}(1=0)(infinity) interval is defined 2 ways. Under one definition, called forward entropy. it is shown that positive entropy implies that the inverse limit space of ({fi}(1=0)(infinity)) contains an indecomposable subcontinuum. Under the second definition, called backwards entropy, it is shown that the inverse limit space of ({f(i)}(1=0)(infinity).I) is not locally connected. (c) 2006 Elsevier B.V. All rights reserved.
机构:
Univ Sao Paulo, Dept Matemat Aplicada, IME, Rua de Matao 1010, BR-05508090 Sao Paulo, SP, BrazilUniv Sao Paulo, Dept Matemat Aplicada, IME, Rua de Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
Anusic, A. N. A.
Mouron, C. H. R. I. S. T. O. P. H. E. R.
论文数: 0引用数: 0
h-index: 0
机构:
Rhodes Coll, Rhodes Coll 2000 North Pkwy, Memphis, TN 38112 USAUniv Sao Paulo, Dept Matemat Aplicada, IME, Rua de Matao 1010, BR-05508090 Sao Paulo, SP, Brazil