Approximating minimum feedback vertex sets in hypergraphs

被引:1
|
作者
Fujito, T [1 ]
机构
[1] Hiroshima Univ, Dept Elect Engn, Higashihiroshima 7398527, Japan
关键词
approximation algorithm; performance guarantee; feedback vertex set; hypergraph;
D O I
10.1016/S0304-3975(99)00043-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The feedback vertex set problem for hypergraphs is considered and an efficient approximation algorithm is presented. It is shown that an approximation factor of k is guaranteed when the cardinality of every hyperedge is bounded by an integer k, generalizing the existing result for ordinary graphs. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:107 / 116
页数:10
相关论文
共 50 条
  • [1] ON LOCATING MINIMUM FEEDBACK VERTEX SETS
    LLOYD, EL
    SOFFA, ML
    WANG, CC
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1988, 37 (03) : 292 - 311
  • [2] On Minimum Feedback Vertex Sets in Graphs
    Takaoka, Asahi
    Tayu, Satoshi
    Ueno, Shuichi
    [J]. 2012 THIRD INTERNATIONAL CONFERENCE ON NETWORKING AND COMPUTING (ICNC 2012), 2012, : 429 - 434
  • [3] ON DETERMINATION OF MINIMUM FEEDBACK ARC AND VERTEX SETS
    DIVIETI, L
    GRASSELLI, A
    LEMPEL, A
    CEDERBAUM, I
    [J]. IEEE TRANSACTIONS ON CIRCUIT THEORY, 1968, CT15 (01): : 86 - +
  • [4] Approximating vertex cover in dense hypergraphs
    Cardinal, Jean
    Karpinski, Marek
    Schmied, Richard
    Viehmann, Claus
    [J]. JOURNAL OF DISCRETE ALGORITHMS, 2012, 13 : 67 - 77
  • [5] Approximating Minimum Feedback Sets and Multicuts in Directed Graphs
    G. Even
    J. (Seffi) Naor
    B. Schieber
    M. Sudan
    [J]. Algorithmica, 1998, 20 : 151 - 174
  • [6] Approximating minimum feedback sets and multicuts in directed graphs
    Even, G
    Naor, J
    Schieber, B
    Sudan, M
    [J]. ALGORITHMICA, 1998, 20 (02) : 151 - 174
  • [7] Minimum weight feedback vertex sets in circle graphs
    Gavril, Fanica
    [J]. INFORMATION PROCESSING LETTERS, 2008, 107 (01) : 1 - 6
  • [8] MINIMUM FEEDBACK ARC AND VERTEX SETS OF A DIRECTED GRAPH
    LEMPEL, A
    CEDERBAUM, I
    [J]. IEEE TRANSACTIONS ON CIRCUIT THEORY, 1966, CT13 (04): : 399 - +
  • [9] Approximating minimum subset feedback sets in undirected graphs with applications
    Even, G
    Naor, JS
    Schieber, B
    Zosin, L
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2000, 13 (02) : 255 - 267
  • [10] Exact computation of minimum feedback vertex sets with relational algebra
    Berghammer, Rudolf
    Fronk, Alexander
    [J]. FUNDAMENTA INFORMATICAE, 2006, 70 (04) : 301 - 316