We introduce two-stage stochastic semidefinite programs with recourse and present an interior point algorithm for solving these problems using Bender's decomposition. This decomposition algorithm and its analysis extend Zhao's results [Math. Program., 90 (2001), pp. 507-536] for stochastic linear programs. The convergence results are proved by showing that the logarithmic barrier associated with the recourse function of two-stage stochastic semidefinite programs with recourse is a strongly self-concordant barrier on the first stage solutions. The short-step variant of the algorithm requires O(root p + Kr In mu(0) / epsilon) Newton iterations to follow the first stage central path from a starting value of the barrier parameter mu(0) to a terminating value epsilon. The long-step variant requires O(( p + Kr In mu(0) / epsilon) damped Newton iterations. The calculation of the gradient and Hessian of the recourse function and the first stage Newton direction decomposes across the second stage scenarios.
机构:
York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, CanadaYork Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
Chen, Michael
Mehrotra, Sanjay
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept IE MS, Evanston, IL 60208 USAYork Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
机构:
Univ Fed Rio de Janeiro, COPPE Sistemas, Inst Matemat, BR-21941972 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, COPPE Sistemas, Inst Matemat, BR-21941972 Rio De Janeiro, Brazil
Oliveira, Welington
Sagastizabal, Claudia
论文数: 0引用数: 0
h-index: 0
机构:Univ Fed Rio de Janeiro, COPPE Sistemas, Inst Matemat, BR-21941972 Rio De Janeiro, Brazil
Sagastizabal, Claudia
Scheimberg, Susana
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, COPPE Sistemas, Inst Matemat, BR-21941972 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, COPPE Sistemas, Inst Matemat, BR-21941972 Rio De Janeiro, Brazil