Quantum electron transport modeling in nano-scale devices

被引:0
|
作者
Ogawa, M [1 ]
Tsuchiya, H [1 ]
Miyoshi, T [1 ]
机构
[1] Kobe Univ, Dept Elect & Elect Engn, Kobe, Hyogo 6578501, Japan
关键词
Green's functions; tight-binding method; quantum correction; Monte Carlo method;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We describe progress we have achieved in the development of our quantum transport modeling for nano-scale devices. Our simulation is based upon either the non-equilibrium Green's function method (NEGF) or the quantum correction (QC) associated with density gradient method (DG) and/or effective potential method (EP). We show the results of our modeling methods applied to several devices and discuss issues faced with regards to computational time, open boundary conditions, and their relationship to self-consistent solution of the Poisson-NEGF equations. We also discuss those for efficiently tailored QC Monte Carlo techniques.
引用
收藏
页码:363 / 371
页数:9
相关论文
共 50 条
  • [1] Quantum transport modeling in nano-scale devices
    Ogawa, M
    Tsuchiya, H
    Miyoshi, T
    [J]. SISPAD 2002: INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, 2002, : 261 - 266
  • [2] Electrical transport in nano-scale silicon devices
    Kawaura, H
    Sakamoto, T
    [J]. IEICE TRANSACTIONS ON ELECTRONICS, 2001, E84C (08) : 1037 - 1042
  • [3] Non-equilibrium Green’s function method for modeling quantum electron transport in nano-scale devices with anisotropic multiband structure
    Helmy Fitriawan
    Matsuto Ogawa
    Satofumi Souma
    Tanroku Miyoshi
    [J]. Journal of Materials Science: Materials in Electronics, 2008, 19 : 107 - 110
  • [4] Non-equilibrium Green's function method for modeling quantum electron transport in nano-scale devices with anisotropic multiband structure
    Fitriawan, Helmy
    Ogawa, Matsuto
    Souma, Satofumi
    Miyoshi, Tanroku
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2008, 19 (02) : 107 - 110
  • [5] Current transport models for nano-scale semiconductor devices
    Gehring, Andreas
    Selberherr, Siegfried
    [J]. WMSCI 2005: 9TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL 6, 2005, : 366 - 371
  • [6] Plasmon controlled quantum transport in nano-scale junctions
    Selzer, Yoram
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [7] QUANTUM TRANSPORT IN BALLISTIC NANO-SCALE CORBINO DISKS
    KIRCZENOW, G
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 (39) : L583 - L588
  • [8] Scattering in a nano-scale MOSFET: A quantum transport analysis
    Chen, WQ
    Register, LF
    Banerjee, SK
    [J]. 2003 THIRD IEEE CONFERENCE ON NANOTECHNOLOGY, VOLS ONE AND TWO, PROCEEDINGS, 2003, : 32 - 35
  • [9] Quantum and kinetic simulation tools for nano-scale electronic devices
    Fedoseyev, A
    Kolobov, V
    Arslanbekov, R
    Przekwas, A
    Balandin, A
    [J]. NANOTECH 2003, VOL 2, 2003, : 214 - 217
  • [10] Nonequilibrium GW approach to quantum transport in nano-scale contacts
    Thygesen, Kristian S.
    Rubio, Angel
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (09):