Low N2O emissions from wheat in a wheat-rice double cropping system due to manure substitution are associated with changes in the abundance of functional microbes

被引:32
|
作者
Kong, Delei [1 ]
Jin, Yaguo [1 ]
Yu, Kai [1 ]
Swaney, Dennis P. [3 ]
Liu, Shuwei [1 ,2 ]
Zou, Jianwen [1 ,2 ]
机构
[1] Nanjing Agr Univ, Coll Resources & Environm Sci, Jiangsu Key Lab Low Carbon Agr & GHGs Mitigat, Nanjing 210095, Peoples R China
[2] Nanjing Agr Univ, Jiangsu Key Lab & Engn Ctr Solid Organ Waste Util, Jiangsu Collaborat Innovat Ctr Solid Organ Waste, Nanjing 210095, Peoples R China
[3] Cornell Univ, Dept Ecol & Evolutionary Biol, Corson Hall, Ithaca, NY 14853 USA
基金
中国国家自然科学基金;
关键词
Fertilizer; N2O; N cycling; Functional microbe; Wheat cropland; Mitigation; NITROUS-OXIDE EMISSIONS; AMMONIA-OXIDIZING BACTERIA; LONG-TERM FERTILIZATION; GREENHOUSE-GAS INTENSITY; DENITRIFYING BACTERIA; ORGANIC FERTILIZERS; COMMUNITY STRUCTURE; METHANE EMISSIONS; ROTATION SYSTEMS; GENE ABUNDANCE;
D O I
10.1016/j.agee.2021.107318
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Fertilization has been shown to affect nitrogen (N) cycling and its related functional microbes in agricultural soils. However, the linkage between soil N2O emissions and N-related functional genes under different fertilization strategies from wheat in a wheat-rice double cropping system is rarely examined. Here, we carried out a two-year field study to examine the response of soil N2O emissions driven by N cycling functional genes [archaeal and bacterial amoA (AOA + AOB), nirS, nirK and nosZ] to different fertilization strategies in a wheat cropland of subtropical China. Three fertilizer treatments were established consisting of chemical phosphorus (P) and potassium (K) fertilizer application (PK), chemical N (urea) and PK fertilizer application (NPK), and chemical NPK fertilizer application with chemical N partially replaced with manure (composted pig manure) (NPKM). Over the two wheat seasons, seasonal total N2O emissions averaged 0.66, 3.60 and 3.11 kg N ha(-1) for PK, NPK and NPKM plots, respectively. Relative to the NPK treatment, the NPKM treatment significantly decreased N2O emissions by 14 % without compromising grain yield, with a lowered combined fertilizer-induced emission factor (EF) of 1.02 %. Compared with the PK treatment, N fertilization consistently and significantly increased the abundance of ammonium-oxidation bacteria (AOB), nirS, nirK and nosZ genes. The nosZ gene, which drives N2O reduction during denitrification, showed a greater extent under NPKM with manure N combination. The AOB had a more sensitive response than ammonium-oxidation archaea (AOA) to chemical N fertilization. Seasonal N2O emissions showed significant positive correlations with AOB gene abundance and the ratio of (nirK+nirS)/nosZ, while had a negative correlation with nosZ gene abundance across N fertilized treatments. The N2O-related microbial composition of functional genes was significantly changed by N fertilizer application and also showed contrasting patterns between treatments of chemical N fertilizer with and without manure N substitution. Together, partially replacing chemical N fertilizer with manure reduced N2O emissions from wheat in a wheat-rice double cropping system, mainly through decreasing AOB associated-nitrifying potential, and particularly stimulating N2O reduction.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Nitrogen use efficiency exhibits a trade-off relationship with soil N2O and NO emissions from wheat-rice rotations receiving manure substitution
    Kong, Delei
    Jin, Yaguo
    Chen, Jie
    Yu, Kai
    Zheng, Yajing
    Wu, Shuang
    Liu, Shuwei
    Zou, Jianwen
    Geoderma, 2021, 403
  • [2] Nitrogen use efficiency exhibits a trade-off relationship with soil N2O and NO emissions from wheat-rice rotations receiving manure substitution
    Kong, Delei
    Jin, Yaguo
    Chen, Jie
    Yu, Kai
    Zheng, Yajing
    Wu, Shuang
    Liu, Shuwei
    Zou, Jianwen
    GEODERMA, 2021, 403
  • [3] N2O emissions from soils under short-term straw return in a wheat-corn rotation system are associated with changes in the abundance of functional microbes
    Lin, Jitong
    Xu, Zhiyu
    Xue, Yinghao
    Sun, Renhua
    Yang, Rongguang
    Cao, Xiaoxu
    Li, Hui
    Shao, Qi
    Lou, Yanhong
    Wang, Hui
    Yang, Quangang
    Pan, Hong
    Zhuge, Yuping
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2023, 341
  • [4] Seasonal variations in N2 and N2O emissions from a wheat–maize cropping system
    Tuo Chen
    Oene Oenema
    Jiazhen Li
    Tom Misselbrook
    Wenxu Dong
    Shuping Qin
    Haijing Yuan
    Xiaoxin Li
    Chunsheng Hu
    Biology and Fertility of Soils, 2019, 55 : 539 - 551
  • [5] N2O emissions dominated by fungi in an intensively managed vegetable field converted from wheat-rice rotation
    Ma, Shutan
    Shan, Jun
    Yan, Xiaoyuan
    APPLIED SOIL ECOLOGY, 2017, 116 : 23 - 29
  • [6] Warming increase the N2O emissions from wheat fields but reduce the wheat yield in a rice-wheat rotation system
    Ma, Chao
    Liu, Yingduo
    Wang, Jing
    Xue, Lixiang
    Hou, Pengfu
    Xue, Lihong
    Yang, Linzhang
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2022, 337
  • [7] Seasonal variations in N2 and N2O emissions from a wheat-maize cropping system
    Chen, Tuo
    Oenema, Oene
    Li, Jiazhen
    Misselbrook, Tom
    Dong, Wenxu
    Qin, Shuping
    Yuan, Haijing
    Li, Xiaoxin
    Hu, Chunsheng
    BIOLOGY AND FERTILITY OF SOILS, 2019, 55 (06) : 539 - 551
  • [8] Yield-scaled N2O emissions in a winter wheat summer corn double-cropping system
    Qin, Shuping
    Wang, Yuying
    Hu, Chunsheng
    Oenema, Oene
    Li, Xiaoxin
    Zhang, Yuming
    Dong, Wenxu
    ATMOSPHERIC ENVIRONMENT, 2012, 55 : 240 - 244
  • [9] Synergistic effect of elevated CO2 and straw amendment on N2O emissions from a rice-wheat cropping system
    Yan, Shengji
    Liu, Yunlong
    Revillini, Daniel
    Delgado-Baquerizo, Manuel
    van Groenigen, Kees Jan
    Shang, Ziyin
    Zhang, Xin
    Qian, Haoyu
    Jiang, Yu
    Deng, Aixing
    Smith, Pete
    Ding, Yanfeng
    Zhang, Weijian
    BIOLOGY AND FERTILITY OF SOILS, 2024, : 1159 - 1171
  • [10] Rice planting reduced N2O emissions from rice-growing seasons due to increased nosZ gene abundance under a rice-wheat rotation system
    Xu, Peng
    Jiang, Mengdie
    Khan, Imran
    Zhao, Jinsong
    Hu, Ronggui
    EUROPEAN JOURNAL OF AGRONOMY, 2024, 152