A coalgebraic view on positive modal logic

被引:17
|
作者
Palmigiano, A [1 ]
机构
[1] Univ Barcelona, Fac Filosofia Hist & Filosofia Ciencia, Dept Logica, E-08028 Barcelona, Spain
关键词
positive modal logic; positive modal algebra; Priestley space; Vietoris functor;
D O I
10.1016/j.tcs.2004.07.026
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Positive modal logic is the restriction of the modal local consequence relation defined by the class of all Kripke models to the propositional negation-free modal language. The class of positive modal algebras is the one canonically associated with PML according to the theory of the algebrization of logics (Lecture Notes in Logic, Springer, Berlin, 1996). A Priestley-style duality is established between the category of positive modal algebras and the category of K+-spaces in (J. IGPL 7 (6) (1999) 683). In this paper, we establish a categorical equivalence between the category K+ of K+-spaces and the category Coalg(V) of coalgebras of a suitable endofunctor V on the category of Priestley spaces. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:175 / 195
页数:21
相关论文
共 50 条
  • [1] On a coalgebraic view on Logic
    Hofmann, Dirk
    Martins, Manuel A.
    [J]. JOURNAL OF LOGIC AND COMPUTATION, 2013, 23 (05) : 1097 - 1106
  • [2] Coalgebraic modal logic in CoCasl
    Schroeder, Lutz
    Mossakowski, Till
    [J]. RECENT TRENDS IN ALGEBRAIC DEVELOPMENT TECHNIQUES, 2007, 4409 : 127 - +
  • [3] From Coalgebraic Logic to Modal Logic: An Introduction
    Novitzka, Valerie
    Steingartner, William
    Perhac, Jan
    [J]. IPSI BGD TRANSACTIONS ON INTERNET RESEARCH, 2019, 15 (02):
  • [4] Coalgebraic Modal Logic Beyond Sets
    Klin, Bartek
    [J]. ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2007, 173 (SPEC. ISS.) : 177 - 201
  • [5] Coalgebraic modal logic of finite rank
    Kurz, A
    Pattinson, D
    [J]. MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2005, 15 (03) : 453 - 473
  • [6] A finite model construction for coalgebraic modal logic
    Schroeder, Lutz
    [J]. JOURNAL OF LOGIC AND ALGEBRAIC PROGRAMMING, 2007, 73 (1-2): : 97 - 110
  • [7] A finite model construction for coalgebraic modal logic
    Schröder, L
    [J]. FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, PROCEEDINGS, 2006, 3921 : 157 - 171
  • [8] Expressivity of coalgebraic modal logic:: The limits and beyond
    Schroeder, Lutz
    [J]. THEORETICAL COMPUTER SCIENCE, 2008, 390 (2-3) : 230 - 247
  • [9] Expressivity of coalgebraic modal logic:: The limits and beyond
    Schröder, L
    [J]. FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, PROCEEDINGS, 2005, 3441 : 440 - 454
  • [10] An institutional approach to positive coalgebraic logic
    Balan, Adriana
    Kurz, Alexander
    Velebil, Jiri
    [J]. JOURNAL OF LOGIC AND COMPUTATION, 2017, 27 (06) : 1799 - 1824