Influence of turbulence on the beam propagation factor of Gaussian Schell-model array beams

被引:19
|
作者
Ji, Xiaoling [1 ]
Shao, Xiaoli [1 ]
机构
[1] Sichuan Normal Univ, Dept Phys, Chengdu 610068, Peoples R China
基金
中国国家自然科学基金;
关键词
Beam propagation factor (M-2-factor); Gaussian Schell-model (GSM) array beam; Atmospheric turbulence; Superposition of the cross-spectral density function and the intensity; PARTIALLY COHERENT BEAMS; FLAT-TOPPED BEAMS; AVERAGE INTENSITY; DIRECTIONALITY; QUALITY;
D O I
10.1016/j.optcom.2009.11.041
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The analytical expression for the beam propagation factor (M-2-factor) of Gaussian Schell-model (GSM) array beams propagating through atmospheric turbulence is derived. It is shown that the M-2-factor of GSM array beams depends on the beam number, the relative beam separation distance, the beam coherence parameter, the type of beam superposition, and the strength of turbulence. The turbulence results in an increase of the M-2-factor. However, for the superposition of the intensity the M-2-factor is less sensitive to turbulence than that for the superposition of the cross-spectral density function. The M-2-factor of GSM array beams is larger than that of the corresponding Gaussian array beams. However, the M-2-factor of GSM array beams is less affected by turbulence than that of the corresponding Gaussian array beams. For the superposition of the cross-spectral density function a minimum of the M-2-factor of GSM array beams may appear in turbulence, which is even smaller than that of the corresponding single GSM beams. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:869 / 873
页数:5
相关论文
共 50 条
  • [1] Propagation factor and beam wander of electromagnetic Gaussian Schell-model array beams in non-Kolmogorov turbulence
    Zhang, Biling
    Xu, Yonggen
    Wang, Xiaoyan
    Dan, Youquan
    [J]. OSA CONTINUUM, 2019, 2 (01) : 162 - 174
  • [2] Propagation of Gaussian Schell-model Array beams in free space and atmospheric turbulence
    Mao, Yonghua
    Mei, Zhangrong
    Gu, Juguan
    [J]. OPTICS AND LASER TECHNOLOGY, 2016, 86 : 14 - 20
  • [3] Propagation of twisted EM Gaussian Schell-model array beams in anisotropic turbulence
    Tang, Miaomiao
    Li, Hehe
    Li, Xinzhong
    [J]. APPLIED OPTICS, 2020, 59 (11) : 3432 - 3439
  • [4] Range of turbulence-negligible propagation of Gaussian Schell-model array beams
    Ai, Yangli
    Dan, Youquan
    [J]. OPTICS COMMUNICATIONS, 2011, 284 (13) : 3216 - 3220
  • [5] Turbulence distance of radial Gaussian Schell-model array beams
    Li, X.
    Ji, X.
    Eyyuboglu, H. T.
    Baykal, Y.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 98 (2-3): : 557 - 565
  • [6] Turbulence distance of radial Gaussian Schell-model array beams
    X. Li
    X. Ji
    H. T. Eyyuboğlu
    Y. Baykal
    [J]. Applied Physics B, 2010, 98 : 557 - 565
  • [7] Propagation properties of Gaussian Schell-model array beams in non-Kolmogorov turbulence
    Song, Zhenzhen
    Liu, Zhengjun
    Zhou, Keya
    Sun, Qiongge
    Liu, Shutian
    [J]. JOURNAL OF OPTICS, 2016, 18 (10)
  • [8] Beam quality of radial Gaussian Schell-model array beams
    Li, Xiaoqing
    Ji, Xiaoling
    Yang, Fan
    [J]. OPTICS AND LASER TECHNOLOGY, 2010, 42 (04): : 604 - 609
  • [9] Atmospheric turbulence effects on hollow Gaussian Schell-model array beams
    Shi, Xiaohui
    Mei, Zhangrong
    Mao, Yonghua
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2023, 40 (11) : 2113 - 2118
  • [10] Propagation of multi-Gaussian Schell-model beams in oceanic turbulence
    Zhu, Weiting
    Tang, Miaomiao
    Zhao, Daomu
    [J]. OPTIK, 2016, 127 (08): : 3775 - 3778