Waste prosperity: Mandarin (Citrus reticulata) peels inspired SPION for enhancing diesel oil biodesulfurization efficiency by Rhodococcus erythropolis HN2

被引:15
|
作者
Nassar, Hussein N. [1 ,2 ,3 ]
Ali, Hager R. [1 ]
El-Gendy, Nour Sh [1 ,2 ,3 ]
机构
[1] Egyptian Petr Res Inst EPRI, PO 11727, Cairo, Egypt
[2] October Univ Modern Sci & Arts MSA, Ctr Excellence, PO 12566, Giza, Egypt
[3] Cairo Univ, Fac Nanotechnol Postgrad Studies, Nanobiotechnol Program, Sheikh Zayed Branch Campus,PO 12588, Giza, Egypt
关键词
Phytogenesis; Superparamagnetic iron oxide nanoparticles; Waste fruit debris; Bacteria magnetization; Biocatalytic desulfurization; Hydrodesulfurized diesel oil; IRON-OXIDE NANOPARTICLES; GREEN SYNTHESIS; MAGNETITE NANOPARTICLES; FE3O4; NANOPARTICLES; DBT DESULFURIZATION; SURFACE; DIBENZOTHIOPHENE; BACTERIA; BENZOTHIOPHENE; OPTIMIZATION;
D O I
10.1016/j.fuel.2021.120534
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
To enrich the activity and the lifetime of the selective desulfurizing Rhodococcus erythropolis HN2, a novel unipot eco-friendly, rapid, energy-saving, sustainable, simple, and green hydrothermal precipitation is applied to prepare superparamagnetic iron oxide nanoparticles (SPION) using the widely abundant and costless mandarin (Citrus reticulata) peels agro/domestic waste. X-ray diffraction, dynamic light scattering, zeta potential measurement, vibrating sample magnetometer, scanning electron microscope, high-resolution transmission electron microscope, and X-ray photoelectron spectroscopy revealed crystalline, highly stable spherical shaped Fe3O4 NPs with 11.58 nm average size and 51.12 emu/g magnetic saturation. The green biofunctionalized SPION proved to be non-toxic for HN2 and used for its magnetization, recording 24.97 emu/g at the optimum SPION/biomass ratio of 0.9 g/g. The first-order kinetic model described well the biodesulfurization profile of thiophenic model oil. The magnetized HN2 gained the advantage of tolerance for relatively high oil feed concentrations, higher BDS efficiency, and easier separation by applying an external magnetic field beside its efficient reusability for six consecutive times keeping approximately 80% of its initial activity. In a 120 h biphasic batch BDS process (30% v/v oil/water), the green magnetized HN2 removed approximately 86% and 96% of the 500 mg/L and 690 mg/L total sulfur content of a thiophenic model oil and a hydrodesulfurized diesel oil under mild operating conditions, respectively.
引用
收藏
页数:16
相关论文
empty
未找到相关数据