Acoustic Identification of the Voicing Boundary during Intervocalic Offsets and Onsets Based on Vocal Fold Vibratory Measures
被引:5
|
作者:
Vojtech, Jennifer M.
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
Boston Univ, Dept Speech Language & Hearing Sci, Boston, MA 02215 USA
Delsys Inc, Natick, MA 01760 USA
Altec Inc, Natick, MA 01760 USABoston Univ, Dept Biomed Engn, Boston, MA 02215 USA
Vojtech, Jennifer M.
[1
,2
,3
,4
]
Cilento, Dante D.
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Dept Speech Language & Hearing Sci, Boston, MA 02215 USABoston Univ, Dept Biomed Engn, Boston, MA 02215 USA
Cilento, Dante D.
[2
]
Luong, Austin T.
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Dept Speech Language & Hearing Sci, Boston, MA 02215 USABoston Univ, Dept Biomed Engn, Boston, MA 02215 USA
Luong, Austin T.
[2
]
Noordzij, Jacob P., Jr.
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Dept Speech Language & Hearing Sci, Boston, MA 02215 USABoston Univ, Dept Biomed Engn, Boston, MA 02215 USA
Noordzij, Jacob P., Jr.
[2
]
Diaz-Cadiz, Manuel
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Dept Speech Language & Hearing Sci, Boston, MA 02215 USABoston Univ, Dept Biomed Engn, Boston, MA 02215 USA
Diaz-Cadiz, Manuel
[2
]
Groll, Matti D.
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
Boston Univ, Dept Speech Language & Hearing Sci, Boston, MA 02215 USABoston Univ, Dept Biomed Engn, Boston, MA 02215 USA
Groll, Matti D.
[1
,2
]
Buckley, Daniel P.
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Dept Speech Language & Hearing Sci, Boston, MA 02215 USA
Boston Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Boston, MA 02118 USABoston Univ, Dept Biomed Engn, Boston, MA 02215 USA
Buckley, Daniel P.
[2
,5
]
McKenna, Victoria S.
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Dept Speech Language & Hearing Sci, Boston, MA 02215 USABoston Univ, Dept Biomed Engn, Boston, MA 02215 USA
McKenna, Victoria S.
[2
]
Noordzij, J. Pieter
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Boston, MA 02118 USABoston Univ, Dept Biomed Engn, Boston, MA 02215 USA
Noordzij, J. Pieter
[5
]
Stepp, Cara E.
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
Boston Univ, Dept Speech Language & Hearing Sci, Boston, MA 02215 USA
Boston Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Boston, MA 02118 USABoston Univ, Dept Biomed Engn, Boston, MA 02215 USA
Stepp, Cara E.
[1
,2
,5
]
机构:
[1] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[2] Boston Univ, Dept Speech Language & Hearing Sci, Boston, MA 02215 USA
[3] Delsys Inc, Natick, MA 01760 USA
[4] Altec Inc, Natick, MA 01760 USA
[5] Boston Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Boston, MA 02118 USA
Methods for automating relative fundamental frequency (RFF)-an acoustic estimate of laryngeal tension-rely on manual identification of voiced/unvoiced boundaries from acoustic signals. This study determined the effect of incorporating features derived from vocal fold vibratory transitions for acoustic boundary detection. Simultaneous microphone and flexible nasendoscope recordings were collected from adults with typical voices (N = 69) and with voices characterized by excessive laryngeal tension (N = 53) producing voiced-unvoiced-voiced utterances. Acoustic features that coincided with vocal fold vibratory transitions were identified and incorporated into an automated RFF algorithm ("aRFF-APH"). Voiced/unvoiced boundary detection accuracy was compared between the aRFF-APH algorithm, a recently published version of the automated RFF algorithm ("aRFF-AP"), and gold-standard, manual RFF estimation. Chi-square tests were performed to characterize differences in boundary cycle identification accuracy among the three RFF estimation methods. Voiced/unvoiced boundary detection accuracy significantly differed by RFF estimation method for voicing offsets and onsets. Of 7721 productions, 76.0% of boundaries were accurately identified via the aRFF-APH algorithm, compared to 70.3% with the aRFF-AP algorithm and 20.4% with manual estimation. Incorporating acoustic features that corresponded with voiced/unvoiced boundaries led to improvements in boundary detection accuracy that surpassed the gold-standard method for calculating RFF.