TOPOLOGICAL INVARIANCE OF QUANTUM QUATERNION SPHERES

被引:1
|
作者
Saurabh, Bipul [1 ]
机构
[1] Inst Math Sci, CIT Campus, Madras 600113, Tamil Nadu, India
关键词
homogeneous extension; quantum double suspension; corona factorization property; APPROXIMATE UNITARY EQUIVALENCE; CSTAR-ALGEBRAS; EXTENSIONS;
D O I
10.2140/pjm.2017.288.435
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The C*-algebra of continuous functions on the quantum quaternion sphere H-q(2n) can be identified with the quotient algebra C(SPq(2n)/SPq(2n-2)). In the commutative case, i.e., for q=1, the topological space SP(2n)/SP(2n-2) is homeomorphic to the odd-dimensional sphere S4n-1. In this paper, we prove the noncommutative analogue of this result. Using homogeneous C*-extension theory, we prove that the C*-algebra C(H-q(2n)) is isomorphic to the C*-algebra C(S-q(4n-1)). This further implies that for different values of q in [0,1), the C*-algebras underlying the noncommutative spaces H-q(2n) are isomorphic.
引用
收藏
页码:435 / 452
页数:18
相关论文
共 50 条