Reduction of multisymplectic manifolds

被引:14
|
作者
Blacker, Casey [1 ,2 ]
机构
[1] St Petersburg State Univ, 14th Line 29B, St Petersburg 199178, Russia
[2] Leonhard Euler Int Math Inst St Petersburg, 14th Line 29B, St Petersburg 199178, Russia
基金
中国博士后科学基金;
关键词
Multisymplectic geometry; Moment maps; Duistermaat-Heckman theorems; 53D05; 53D20; 70S05; 70S10; COURANT ALGEBROIDS; GEOMETRY; QUANTIZATION; CONVEXITY; FORMS;
D O I
10.1007/s11005-021-01408-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We extend the Marsden-Weinstein-Meyer symplectic reduction theorem to the setting of multisymplectic manifolds. In this context, we investigate the dependence of the reduced space on the reduction parameters. With respect to a distinguished class of multisymplectic moment maps, an exact stationary phase approximation and nonabelian localization theorem are also obtained.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Reduction of multisymplectic manifolds
    Casey Blacker
    Letters in Mathematical Physics, 2021, 111
  • [2] Reduction of L∞-Algebras of Observables on Multisymplectic Manifolds
    Blacker, Casey
    Miti, Antonio Michele
    Ryvkin, Leonid
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2024, 20
  • [3] On the geometry of multisymplectic manifolds
    Cantrijn, F
    Ibort, A
    De León, M
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1999, 66 : 303 - 330
  • [4] ON HAMILTONIAN GROUP OF MULTISYMPLECTIC MANIFOLDS
    Shafiee, M.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (05) : 929 - 935
  • [5] CONSERVED QUANTITIES ON MULTISYMPLECTIC MANIFOLDS
    Ryvkin, Leonid
    Wurzbacher, Tilmann
    Zambon, Marco
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 108 (01) : 120 - 144
  • [6] Some Properties of Multisymplectic Manifolds
    Roman-Roy, Narciso
    CLASSICAL AND QUANTUM PHYSICS: 60 YEARS ALBERTO IBORT FEST GEOMETRY, DYNAMICS, AND CONTROL, 2019, 229 : 325 - 336
  • [7] Homotopy momentum sections on multisymplectic manifolds
    Hirota, Yuji
    Ikeda, Noriaki
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 182
  • [8] REMARKS ON MULTISYMPLECTIC REDUCTION
    Echeverria-Enriquez, Arturo
    Munoz-Lecanda, Miguel C.
    Roman-Roy, Narciso
    REPORTS ON MATHEMATICAL PHYSICS, 2018, 81 (03) : 415 - 424
  • [9] Spin(7)-manifolds and multisymplectic geometry
    Kennon, Aaron
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (12)
  • [10] BEREZIN-TOEPLITZ QUANTIZATION, HYPERKAHLER MANIFOLDS, AND MULTISYMPLECTIC MANIFOLDS
    Barron, Tatyana
    Serajelahi, Baran
    GLASGOW MATHEMATICAL JOURNAL, 2017, 59 (01) : 167 - 187