Wavelet and neuro-fuzzy conjunction model for precipitation forecasting

被引:239
|
作者
Partal, Turgay
Kisi, Oezguer [1 ]
机构
[1] Erciyes Univ, Fac Engn, Dept Civil Engn, Hydraul Div, TR-38039 Kayseri, Turkey
[2] Tech Univ Istanbul, Dept Civil Engn, Hydraul Div, TR-34469 Istanbul, Turkey
关键词
wavelet; discrete wavelet; transform; neuro-fuzzy; precipitation; forecast;
D O I
10.1016/j.jhydrol.2007.05.026
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A new conjunction method (wavelet-neuro-fuzzy) for precipitation forecast is proposed in this study. The conjunction method combines two methods, discrete wavelet transform and neuro-fuzzy. The observed daily precipitations are decomposed some subseries by using discrete wavelet transform and then appropriate sub-series are used as inputs to the neuro-fuzzy models for forecasting of daily precipitations. The daily precipitation data of three stations in Turkey are used as case studies. The wavelet-neuro-fuzzy model is provided a good fit with the observed data, especially for time series which have zero precipitation in the summer months and for the peaks in the testing period. The conjunction models are compared with classical neuro-fuzzy model. The benchmark results showed that the conjunction model produced significantly better results than the tatter. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:199 / 212
页数:14
相关论文
共 50 条