Histidine-Controlled Homochiral and Ferroelectric Metal-Organic Frameworks

被引:26
|
作者
Yu, Lei [1 ]
Hua, Xiu-Ni [1 ]
Jiang, Xi-Jie [2 ]
Qin, Lan [1 ]
Yan, Xiao-Zhi [1 ]
Luo, Lai-Hui [2 ]
Han, Lei [1 ]
机构
[1] Ningbo Univ, Inst Inorgan Mat, Sch Mat Sci & Chem Engn, Ningbo 315211, Zhejiang, Peoples R China
[2] Ningbo Univ, Dept Microelect Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
DOT-PI STACKING; SUPRAMOLECULAR ARCHITECTURES; COORDINATION CHEMISTRY; CATALYTIC-ACTIVITY; POROUS MATERIALS; SINGLE-CRYSTAL; SYNTHON; LIGANDS; DIMERS; CONSTRUCTION;
D O I
10.1021/cg5013796
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new multifunctional enantiopure ligand, (S)-2-(1,8-naphthalimido)-3-(4-imidazole)propanoate (s-nip), containing a homochiral center derived from l-histidine and a strong pi center dot center dot center dot pi stacking 1,8-naphthalimide synthon, has been used to prepare three novel metalorganic frameworks. The frameworks of [Zn(s-nip)(2)](n) (1) and {[Co(s-nip)(2)]center dot(H2O)(0.5)}(n) (2) are isostructural three-dimensional (3D) homochiral supramolecular structures organized one-dimensional (1D) ribbons by strong hydrogen bonds and pi center dot center dot center dot pi interactions, which display ferroelectric behavior at room temperature. The complex [Cu(nia)(2)center dot(H2O)(5)](n) (3) was constructed under a hydrothermal in situ ligand synthesis reaction, in which the new ligand 2-(1,8-naphthalimido)-3-(4-imidazole)acrylate (nia) was formed from the s-nip ligand via a dehydrogenation reaction. The two-dimensional network of 3 stacks into a 3D structure via pi center dot center dot center dot pi interactions resulting in 1D hydrophilic channels.
引用
收藏
页码:687 / 694
页数:8
相关论文
共 50 条
  • [1] Homochiral metal-organic frameworks for enantioseparation
    Liu, Juan
    Mukherjee, Soumya
    Wang, Fei
    Fischer, Roland A.
    Zhang, Jian
    [J]. CHEMICAL SOCIETY REVIEWS, 2021, 50 (09) : 5706 - 5745
  • [2] Ferroelectric Metal-Organic Frameworks
    Zhang, Wen
    Xiong, Ren-Gen
    [J]. CHEMICAL REVIEWS, 2012, 112 (02) : 1163 - 1195
  • [3] Synthetic design of homochiral metal-organic frameworks
    Nguyen, Edward
    Zhao, Xiang
    Bu, Xianhui
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [4] Enantioselective catalysis with homochiral metal-organic frameworks
    Ma, Liqing
    Abney, Carter
    Lin, Wenbin
    [J]. CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) : 1248 - 1256
  • [5] Homochiral Helical Metal-Organic Frameworks of Potassium
    Reger, Daniel L.
    Leitner, Andrew P.
    Smith, Mark D.
    [J]. INORGANIC CHEMISTRY, 2012, 51 (19) : 10071 - 10073
  • [6] Homochiral metal-organic frameworks as heterogeneous catalysts
    Gheorghe, Andreea
    Tepaske, Martijn A.
    Tanase, Stefania
    [J]. INORGANIC CHEMISTRY FRONTIERS, 2018, 5 (07): : 1512 - 1523
  • [7] Homochiral metal-organic frameworks based on transition metal bisphosphonates
    Evans, OR
    Manke, DR
    Lin, WB
    [J]. CHEMISTRY OF MATERIALS, 2002, 14 (09) : 3866 - 3874
  • [8] Homochiral Metal-Organic Frameworks for Heterogeneous Asymmetric Catalysis
    Dang, Dongbin
    Wu, Pengyan
    He, Cheng
    Xie, Zhong
    Duan, Chunying
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (41) : 14321 - 14323
  • [9] Homochiral helical metal-organic frameworks of group 1
    Leitner, Andrew
    Reger, Daniel
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [10] Homochiral porous metal-organic frameworks: Why and how?
    Lin, WB
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2005, 178 (08) : 2486 - 2490