Structural stability of a 1D compressible viscoelastic fluid model

被引:9
|
作者
Huo, Xiaokai [1 ]
Yong, Wen-An [1 ]
机构
[1] Tsinghua Univ, Zhou Pei Yuan Ctr Appl Math, Beijing 100084, Peoples R China
关键词
GLOBAL EXISTENCE; HYPERBOLIC SYSTEMS; FLOWS; LIMIT;
D O I
10.1016/j.jde.2016.03.041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with a compressible viscoelastic fluid model proposed by Ottinger. Although the model has a convex entropy, the Hessian matrix of the entropy does not symmetrize the system of first order partial differential equations due to the non-conservative terms in the constitutive equation. We show that the corresponding 1D model is symmetrizable hyperbolic and dissipative and satisfies the Kawashima condition. Based on these, we prove the global existence of smooth solutions near equilibrium and justify the compatibility of the model with the Navier-Stokes equations. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1264 / 1284
页数:21
相关论文
共 50 条
  • [1] Global stability of rarefaction waves for the 1D compressible micropolar fluid model with density-dependent viscosity and microviscosity coefficients
    Chen, Zhengzheng
    Wang, Di
    [J]. Nonlinear Analysis: Real World Applications, 2021, 58
  • [2] Global stability of rarefaction waves for the 1D compressible micropolar fluid model with density-dependent viscosity and microviscosity coefficients
    Chen, Zhengzheng
    Wang, Di
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 58
  • [3] The Cauchy problem for a 1D compressible viscous micropolar fluid model: Analysis of the stabilization and the regularity
    Qin, Yuming
    Wang, Taige
    Hu, Guili
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (03) : 1010 - 1029
  • [5] Stability of contact discontinuity for 1-D compressible viscous micropolar fluid model
    Liu, Qingqing
    Yin, Haiyan
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 149 : 41 - 55
  • [6] Stability of rarefaction waves for 1-D compressible viscous micropolar fluid model
    Jin, Jing
    Duan, Ran
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (02) : 1123 - 1143
  • [7] A 1D fluid model of the Centaurus A jet
    Wykes, Sarka
    Snios, Bradford T.
    Nulsen, Paul E. J.
    Kraft, Ralph P.
    Birkinshaw, Mark
    Hardcastle, Martin J.
    Worrall, Diana M.
    McDonald, Iain
    Rejkuba, Marina
    Jones, Thomas W.
    Stark, David J.
    Forman, William R.
    Meyer, Eileen T.
    Jones, Christine
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 485 (01) : 872 - 888
  • [8] CONVERGENT FINITE DIFFERENCE SCHEME FOR 1D FLOW OF COMPRESSIBLE MICROPOLAR FLUID
    Mujakovic, Nermina
    Crnjaric-Zic, Nelida
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2015, 12 (01) : 94 - 124
  • [9] PREDICTING ARTERIAL FLOW AND PRESSURE DYNAMICS USING A 1D FLUID DYNAMICS MODEL WITH A VISCOELASTIC WALL
    Steele, Brooke N.
    Valdez-Jasso, Daniela
    Haider, Mansoor A.
    Olufsen, Mette S.
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (04) : 1123 - 1143
  • [10] Global existence and exponential stability for a 1D compressible and radiative MHD flow
    Qin, Yuming
    Liu, Xin
    Yang, Xinguang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (05) : 1439 - 1488