Perron-Frobenius theory for complex matrices

被引:18
|
作者
Rump, SM [1 ]
机构
[1] Tech Univ Hamburg, Inst Informat 3, D-21071 Hamburg, Germany
关键词
Perron-Frobenius; unified theory; distance to singularity; mu-number;
D O I
10.1016/S0024-3795(02)00329-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to present a unified Perron-Frobenius Theory for nonnegative, for real not necessarily nonnegative and for general complex matrices. The sign-real spectral radius was introduced for general real matrices. This quantity was shown to share certain properties with the Perron root of nonnegative matrices. In this paper we introduce the signcomplex spectral radius. Again, this quantity extends many properties of the Perron root of nonnegative matrices to general complex matrices. Various characterizations will be given, and many open problems remain. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:251 / 273
页数:23
相关论文
共 50 条
  • [1] On the Perron-Frobenius theory for complex matrices
    Noutsos, Dimitrios
    Varga, Richard S.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (04) : 1071 - 1088
  • [2] AN EXTENSION OF THE PERRON-FROBENIUS THEORY TO ARBITRARY MATRICES AND CONES
    Il'yasov, Yavdat
    Valeev, Nurmukhamet
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2024, 40 : 788 - 802
  • [4] Copositive matrices with Perron-Frobenius property
    Yang, Shangjun
    Xu, Changqing
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 3, 2009, : 68 - 71
  • [5] A note on Perron-Frobenius properties of Matrices
    Zheng, Yanping
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 3, 2009, : 325 - 328
  • [6] A note on the Perron-Frobenius property of matrices
    Chen, Jianbiao
    ADVANCES IN MATRIX THEORY AND APPLICATIONS, 2006, : 180 - 183
  • [7] ALGEBRAIC PERRON-FROBENIUS THEORY
    BARKER, GP
    SCHNEIDER, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 11 (03) : 219 - 233
  • [8] Extensions of Perron-Frobenius theory
    Gao, Niushan
    POSITIVITY, 2013, 17 (04) : 965 - 977
  • [9] CORRELATION MATRICES WITH THE PERRON-FROBENIUS PROPERTY
    Boyle, Phelim P.
    N'Diaye, Thierno B.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2018, 34 : 240 - 268
  • [10] A Perron-Frobenius theory for block matrices associated to a multiplex network
    Romance, Miguel
    Sola, Luis
    Flores, Julio
    Garcia, Esther
    Garcia del Amo, Alejandro
    Criado, Regino
    CHAOS SOLITONS & FRACTALS, 2015, 72 : 77 - 89