Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar

被引:14
|
作者
Li, Zhan [1 ,2 ]
Jupp, David L. B. [3 ]
Strahler, Alan H. [1 ]
Schaaf, Crystal B. [2 ]
Howe, Glenn [4 ]
Hewawasam, Kuravi [4 ]
Douglas, Ewan S. [5 ]
Chakrabarti, Supriya [4 ]
Cook, Timothy A. [4 ]
Paynter, Ian [2 ]
Saenz, Edward J. [2 ]
Schaefer, Michael [3 ,6 ]
机构
[1] Boston Univ, Dept Earth & Environm, 675 Commonwealth Ave, Boston, MA 02215 USA
[2] Univ Massachusetts, Sch Environm, 100 Morrissey Blvd, Boston, MA 02125 USA
[3] CSIRO Land & Water, GPO Box 1666, Canberra, ACT 2601, Australia
[4] Univ Massachusetts, Dept Phys & Appl Phys, 600 Suffolk St, Lowell, MA 01854 USA
[5] Boston Univ, Dept Astron, 725 Commonwealth Ave, Boston, MA 02215 USA
[6] Univ New England, Sch Sci & Technol, Precis Agr Res Grp, Armidale, NSW 2351, Australia
来源
SENSORS | 2016年 / 16卷 / 03期
基金
美国国家科学基金会;
关键词
DWEL; radiometric calibration; terrestrial lidar; dual-wavelength lidar; full-waveform lidar; vegetation structure; LEAF-AREA DISTRIBUTION; CANOPY STRUCTURE; INTENSITY DATA; LASER SCANNER; GAP FRACTION; FOREST; PROFILES; DECOMPOSITION; DESIGN; SYSTEM;
D O I
10.3390/s16030313
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Radiometric calibration of the Dual-Wavelength Echidna((R)) Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (rho(app)), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of rho(app) are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that rho(app) error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of rho(app) from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] A Linear Approach for Radiometric Calibration of Full-Waveform Lidar Data
    Roncat, Andreas
    Pfeifer, Norbert
    Briese, Christian
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XVIII, 2012, 8537
  • [2] Empirical Waveform Decomposition and Radiometric Calibration of a Terrestrial Full-Waveform Laser Scanner
    Hartzell, Preston J.
    Glennie, Craig L.
    Finnegan, David C.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (01): : 162 - 172
  • [3] Using dual-wavelength, full-waveform airborne lidar for surface classification and vegetation characterization
    Leigh, Holly W.
    Magruder, Lori A.
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [4] Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure
    Danson, F. Mark
    Gaulton, Rachel
    Armitage, Richard P.
    Disney, Mathias
    Gunawan, Oliver
    Lewis, Philip
    Pearson, Guy
    Ramirez, Alberto F.
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2014, 198 : 7 - 14
  • [5] Spectral and spatial information from a novel dual-wavelength full-waveform terrestrial laser scanner for forest ecology
    Danson, F. Mark
    Sasse, Fadal
    Schofield, Lucy A.
    [J]. INTERFACE FOCUS, 2018, 8 (02)
  • [6] Radiometric calibration of a dual-wavelength terrestrial laser scanner using neural networks
    Schofield, Lucy A.
    Danson, F. Mark
    Entwistle, Neil S.
    Gaulton, Rachel
    Hancock, Steven
    [J]. REMOTE SENSING LETTERS, 2016, 7 (04) : 299 - 308
  • [7] Waveform Simulation of Full-Waveform LIDAR
    Kim, Seongjoon
    Lee, Lmpyeong
    [J]. KOREAN JOURNAL OF REMOTE SENSING, 2010, 26 (01) : 9 - 20
  • [8] Simulating full-waveform LIDAR
    Kim, Angela M.
    Olsen, Richard C.
    Borges, Carlos F.
    [J]. LASER RADAR TECHNOLOGY AND APPLICATIONS XV, 2010, 7684
  • [9] FULL-WAVEFORM TERRESTRIAL LIDAR DATA CLASSIFICATION USING RAW DIGITIZED WAVEFORM SIGNALS
    Pashaei, Mohammad
    Starek, Michael J.
    Berryhill, Jacob
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1916 - 1919
  • [10] Retrieval of leaf water content using terrestrial full-waveform LiDAR
    Zhu, Xi
    Skidmore, Andrew K.
    Darvishzadeh, Roshanak
    Wang, Tiejun
    [J]. REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XVIII, 2016, 9998