Visual learning with navigation as an example

被引:5
|
作者
Weng, JA [1 ]
Chen, SY [1 ]
机构
[1] Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI 48824 USA
来源
基金
美国国家科学基金会;
关键词
National Science Foundation grant IRI 9410741 and Office of Naval Research grant N00014-95-1-0637 supported this work. We thank Yuntao Cui; Sally Howden; and Dan Swets for discussions and development of Shoslif subsystems;
D O I
10.1109/5254.889108
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Shoslif-N (Self-organizing Hierarchical Optimal Subspace Learning and Inference Framework) has been developed to overcome the limitations of model-based methods. This system automatically derives, during training, the visual features that are best suited for navigation. Using system states enables Shoslif-N to disregard unrelated scene parts and achieve better generalization.
引用
收藏
页码:63 / 71
页数:9
相关论文
共 50 条
  • [1] Interactive learning of visual topological navigation
    Filliat, David
    [J]. 2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS, 2008, : 248 - 254
  • [2] Learning a hierarchical fuzzy system with autonomous navigation as an example
    Zeno, SQ
    He, YB
    Jiang, J
    [J]. Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vols 1-5, 2005, : 3063 - 3068
  • [3] Visual Navigation Using Inverse Reinforcement Learning and an Extreme Learning Machine
    Fang, Qiang
    Zhang, Wenzhuo
    Wang, Xitong
    [J]. ELECTRONICS, 2021, 10 (16)
  • [4] Deep Reinforcement Learning for Visual Semantic Navigation with Memory
    de Andrade Santos, Iury Batista
    Romero, Roseli A. F.
    [J]. 2020 XVIII LATIN AMERICAN ROBOTICS SYMPOSIUM, 2020 XII BRAZILIAN SYMPOSIUM ON ROBOTICS AND 2020 XI WORKSHOP OF ROBOTICS IN EDUCATION (LARS-SBR-WRE 2020), 2020, : 114 - 119
  • [5] Learning View and Target Invariant Visual Servoing for Navigation
    Li, Yimeng
    Kosecka, Jana
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 658 - 664
  • [6] Deep Visual MPC-Policy Learning for Navigation
    Hirose, Noriaki
    Xia, Fei
    Martin-Martin, Roberto
    Sadeghian, Amir
    Savarese, Silvio
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 3184 - 3191
  • [7] Visual Navigation via Reinforcement Learning and Relational Reasoning
    Zhou, Kang
    Guo, Chi
    Zhang, Huyin
    [J]. 2021 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, INTERNET OF PEOPLE, AND SMART CITY INNOVATIONS (SMARTWORLD/SCALCOM/UIC/ATC/IOP/SCI 2021), 2021, : 131 - 138
  • [8] Parallel Reinforcement Learning Simulation for Visual Quadrotor Navigation
    Saunders, Jack
    Saeedi, Sajad
    Li, Wenbin
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 1357 - 1363
  • [9] Deep Learning for Visual Navigation of Unmanned Ground Vehicles
    Mahony, Niall O'
    Campbell, Sean
    Krpalkova, Lenka
    Riordan, Daniel
    Walsh, Joseph
    Murphy, Aidan
    Ryan, Conor
    [J]. 2018 29TH IRISH SIGNALS AND SYSTEMS CONFERENCE (ISSC), 2018,
  • [10] SnapNav: Learning Mapless Visual Navigation with Sparse Directional Guidance and Visual Reference
    Xie, Linhai
    Markham, Andrew
    Trigoni, Niki
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 1682 - 1688