An online spatiotemporal temperature model for high temperature polymer electrolyte fuel cells

被引:10
|
作者
Zou, W. [1 ]
Froning, D. [1 ]
Lu, X. J. [3 ]
Lehnert, W. [1 ,2 ]
机构
[1] Forschungszentrum Julich, Inst Energy & Climate Res IEK 3, D-52425 Julich, Germany
[2] Rhein Westfal TH Aachen, Fac Mech Engn, D-52072 Aachen, Germany
[3] Cent South Univ, Sch Mech & Elect Engn, State Key Lab High Performance Complex Mfg, Changsha 410083, Hunan, Peoples R China
关键词
Nonlinear system; PEFC; Thermal behavior; LS-SVM; Spatiotemporal model; SUPPORT VECTOR MACHINES; PERFORMANCE; OPTIMIZATION; SIMULATION; PREDICTION;
D O I
10.1016/j.enconman.2019.111974
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper focuses on the thermal behavior estimation for high temperature polymer electrolyte fuel cells (HT-PEFCs), which can be used for predicting stack temperature and developing a reliable thermal controller. To overcome the complex nonlinear, time-space-distributed properties in fuel cell stacks, an online spatiotemporal temperature model is developed here. This model is based on the least squares support vector machine (LS-SVM), which has the ability to approximate any nonlinear system by a simple model structure. In the proposed method, the spatial correlations across different locations are fully represented by the kernel function, and then the temporal features are further modeled as a function of the inlet flow rate, partial pressure on each side and current density. After that, integrating the spatial kernel function and temporal dynamics function, the spatiotemporal temperature model is then constructed. The proposed method is tested by simulation in Matlab, with a comparison of the experimental data collected from an HT-PEFC test rig. The modeling result demonstrates that the developed model can effectively and precisely predict HT-PEFC thermal behavior. The present study is of key importance and may help as a black box for future development of new optimization and control strategies.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] High temperature polymer electrolyte fuel cells
    Savinell, RF
    Wainright, JS
    Litt, M
    PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON PROTON CONDUCTING MEMBRANE FUEL CELL II, 1999, 98 (27): : 81 - 90
  • [2] A dynamic model for high temperature polymer electrolyte membrane fuel cells
    Boaventura, M.
    Sousa, J. M.
    Mendes, A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (16) : 9842 - 9854
  • [3] Water distribution in high temperature polymer electrolyte fuel cells
    Reimer, Uwe
    Ehlert, Jannik
    Janssen, Holger
    Lehnert, Werner
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (03) : 1837 - 1845
  • [4] Evaluation of Electrolyte Additives for High-Temperature Polymer Electrolyte Fuel Cells
    Mack, Florian
    Galbiati, Samuele
    Gogel, Viktor
    Joerissen, Ludwig
    Zeis, Roswitha
    CHEMELECTROCHEM, 2016, 3 (05): : 770 - 773
  • [5] On the temperature distribution in polymer electrolyte fuel cells
    Pharoah, J. G.
    Burheim, O. S.
    JOURNAL OF POWER SOURCES, 2010, 195 (16) : 5235 - 5245
  • [6] Membrane depending properties of high temperature polymer electrolyte fuel cells
    Mahr, Ulrich
    Gronwald, Oliver
    Reiche, Annette
    Melzner, Dieter
    DESALINATION, 2006, 200 (1-3) : 648 - 649
  • [7] Tetrazole substituted polymers for high temperature polymer electrolyte fuel cells
    Henkensmeier, Dirk
    Ngoc My Hanh Duong
    Brela, Mateusz
    Dyduch, Karol
    Michalak, Artur
    Jankova, Katja
    Cho, Hyeongrae
    Jang, Jong Hyun
    Kim, Hyoung-Juhn
    Cleemann, Lars N.
    Li, Qingfeng
    Jensen, Jens Oluf
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (27) : 14389 - 14400
  • [8] Temperature control strategy for polymer electrolyte fuel cells
    Qi, Yuanxin
    Li, Xiufei
    Li, Shian
    Li, Tingshuai
    Espinoza-Andaluz, Mayken
    Tunestal, Per
    Andersson, Martin
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (06) : 4352 - 4365
  • [9] Temperature Effects in Polymer Electrolyte Membrane Fuel Cells
    Lochner, Tim
    Kluge, Regina M.
    Fichtner, Johannes
    El-Sayed, Hany A.
    Garlyyev, Batyr
    Bandarenka, Aliaksandr S.
    CHEMELECTROCHEM, 2020, 7 (17) : 3545 - 3568
  • [10] High Temperature Polymer Electrolyte Membrane Fuel Cells with High Phosphoric Acid Retention
    Lim, Katie H.
    Matanovic, Ivana
    Maurya, Sandip
    Kim, Youngkwang
    De Castro, Emory S.
    Jang, Ji-Hoon
    Park, Hyounmyung
    Kim, Yu Seung
    ACS ENERGY LETTERS, 2022, 8 (01) : 529 - 536