Data on MRI brain lesion segmentation using K-means and Gaussian Mixture Model-Expectation Maximization

被引:19
|
作者
Qiao, Ju [1 ]
Cai, Xuezhu [2 ]
Xiao, Qian [3 ]
Chen, Zhengxi [4 ]
Kulkarni, Praveen [5 ]
Ferris, Craig [5 ]
Kamarthi, Sagar [1 ]
Sridhar, Srinivas [6 ]
机构
[1] Northeastern Univ, Dept Mech & Ind, Boston, MA 02115 USA
[2] Northeastern Univ, Dept Bioengn, Boston, MA 02115 USA
[3] Yale Univ, Dept Pharmacol, New Haven, CT USA
[4] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 9, Dept Orthodont, Shanghai, Peoples R China
[5] Northeastern Univ, Dept Psychol, Boston, MA 02115 USA
[6] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
来源
DATA IN BRIEF | 2019年 / 27卷
关键词
Ischemic stroke; Lesion; Magnetic resonance image (MRI); Segmentation;
D O I
10.1016/j.dib.2019.104628
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The data in this article provide details about MRI lesion segmentation using K-means and Gaussian Mixture Model-Expectation Maximization (GMM-EM) algorithms. Both K-means and GMM-EM algorithms can segment lesion area from the rest of brain MRI automatically. The performance metrics (accuracy, sensitivity, specificity, false positive rate, misclassification rate) were estimated for the algorithms and there was no significant difference between K-means and GMM-EM. In addition, lesion size does not affect the accuracy and sensitivity for either method. (c) 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] MRI-Based Brain Tumor Segmentation Using Gaussian and Hybrid Gaussian Mixture Model-Spatially Variant Finite Mixture Model with Expectation-Maximization Algorithm
    Pravitasari, A. A.
    Qonita, S. F.
    Iriawan, Nur
    Irhamah
    Fithriasari, K.
    Purnami, S. W.
    Ferriastuti, W.
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (01): : 77 - 93
  • [2] Comparative Study of K-means, Gaussian Mixture Model, Fuzzy C-means algorithms for Brain Tumor Segmentation
    Baid, U.
    Talbar, S.
    Talbar, S.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING 2016 (ICCASP 2016), 2017, 137 : 592 - 597
  • [3] Modified fuzzy K-means clustering using expectation maximization
    Nasser, Sara
    Alkhaldi, Rawan
    Vert, Gregory
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2006, : 231 - +
  • [4] Clustering performance comparison using K-means and expectation maximization algorithms
    Jung, Yong Gyu
    Kang, Min Soo
    Heo, Jun
    [J]. BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2014, 28 : S44 - S48
  • [5] An Extension Gaussian Mixture Model for Brain MRI Segmentation
    Song, Yantao
    Ji, Zexuan
    Sun, Quansen
    [J]. 2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 4711 - 4714
  • [6] An Improved K-means Algorithm for Brain MRI Image Segmentation
    Liu, Jianwei
    Guo, Lei
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MECHATRONICS, ROBOTICS AND AUTOMATION (ICMRA 2015), 2015, 15 : 1087 - 1090
  • [7] Multiresolution adaptive K-means algorithm for segmentation of brain MRI
    Vemuri, BC
    Rahman, S
    Li, J
    [J]. IMAGE ANALYSIS APPLICATIONS AND COMPUTER GRAPHICS, 1995, 1024 : 347 - 354
  • [8] MRI brain lesion image detection based on color-converted K-means clustering segmentation
    Juang, Li-Hong
    Wu, Ming-Ni
    [J]. MEASUREMENT, 2010, 43 (07) : 941 - 949
  • [9] Two Time Point MS Lesion Segmentation in Brain MRI: An Expectation-Maximization Framework
    Jain, Saurabh
    Ribbens, Annemie
    Sima, Diana M.
    Cambron, Melissa
    De Keyser, Jacques
    Wang, Chenyu
    Barnett, Michael H.
    Van Huffel, Sabine
    Maes, Frederik
    Smeets, Dirk
    [J]. FRONTIERS IN NEUROSCIENCE, 2016, 10
  • [10] MRI Brain Image Segmentation Using Enhanced Adaptive Fuzzy K-Means Algorithm
    Ganesh, M.
    Naresh, M.
    Arvind, C.
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2017, 23 (02): : 325 - 330