frames;
affine frames;
Riesz bases;
Haar wavelet;
basis perturbations;
Lambda-bounded mean variation;
cardinal splines;
D O I:
10.1090/S0002-9939-97-04002-1
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let m is an element of Z(+) be given. For any epsilon > 0 we construct a function f({epsilon}) having the following properties: (a) f({epsilon}) has support in [-epsilon, 1 + epsilon]. (b) f({epsilon}) is an element of C-m(-infinity, infinity). (c) If h denotes the Haar function and 0 < delta < infinity, then \\f({epsilon})-h\\(L delta(R)) less than or equal to (1 + 2(delta))(1/delta)(2 epsilon)(1/delta). (d) f({epsilon}) generates an affine Riesz basis whose frame bounds (which are given explicitly) converge to 1 as epsilon --> 0.