The Ramanujan-Dyson identities and George Beck's congruence conjectures

被引:22
|
作者
Andrews, George E. [1 ]
机构
[1] Penn State Univ, University Pk, PA 16802 USA
关键词
Dyson's rank; George Beck's conjectures; partitions; Ramanujan congruences;
D O I
10.1142/S1793042120400060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dyson's famous conjectures (proved by Atkin and Swinnerton-Dyer) gave a combinatorial interpretation of Ramanujan's congruences for the partition function. The proofs of these results center on one of the universal mock theta functions that generate partitions according to Dyson's rank. George Beck has generalized the study of partition function congruences related to rank by considering the total number of parts in the partitions of n. The related generating functions are no longer part of the world of mock theta functions. However, George Beck has conjectured that certain linear combinations of the related enumeration functions do satisfy congruences modulo 5 and 7. The conjectures are proved here.
引用
收藏
页码:239 / 249
页数:11
相关论文
共 50 条