HYPERSURFACES IN COMPLEX GRASSMANNIANS WHOSE GEODESICS ARE CIRCLES AND STRAIGHT LINES

被引:0
|
作者
De Dios Perez, Juan [1 ]
Hwang, Doo Hyun [2 ,3 ]
Suh, Young Jin [2 ,3 ]
机构
[1] Univ Granada, Dept Geometria & Topol, Granada 18071, Spain
[2] Kyungpook Natl Univ, Dept Math, Daegu 41566, South Korea
[3] Kyungpook Natl Univ, RIRCM, Daegu 41566, South Korea
来源
HOUSTON JOURNAL OF MATHEMATICS | 2020年 / 46卷 / 03期
基金
新加坡国家研究基金会;
关键词
Real hypersurfaces; Grassmannians; circles; geodesics; straight lines; D-parallel shape operator; REAL HYPERSURFACES; 2-PLANE GRASSMANNIANS; PROJECTIVE-SPACE; HOPF HYPERSURFACES; SUBMANIFOLDS; SHAPE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give a new geometric characterization of real hypersurfaces of type (A) in a complex two-plane Grassmannian G(2)(Cm+2), that is, a tube over a totally geodesic G(2)(Cm+1) in G(2)(Cm+2) by observing geodesics which are circles or straight lines in G(2)(Cm+2).
引用
收藏
页码:681 / 693
页数:13
相关论文
共 50 条