Light-trapping in perovskite solar cells

被引:50
|
作者
Du, Qing Guo [1 ,2 ]
Shen, Guansheng [1 ,3 ]
John, Sajeev [1 ,4 ]
机构
[1] Univ Toronto, Dept Phys, 60 ST George St, Toronto, ON M5S 1A7, Canada
[2] ASTAR, Inst High Performance Comp, Singapore 138632, Singapore
[3] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
[4] Soochow Univ, Dept Phys, Suzhou, Peoples R China
来源
AIP ADVANCES | 2016年 / 6卷 / 06期
基金
美国能源部;
关键词
ORGANOMETAL HALIDE PEROVSKITES; PHOTOVOLTAIC APPLICATIONS; OPTICAL-ABSORPTION; REFRACTIVE-INDEX; THIN-FILMS; PERFORMANCE; LAYERS; ARRAYS;
D O I
10.1063/1.4953336
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We numerically demonstrate enhanced light harvesting efficiency in both CH3NH3PbI3 and CH(NH2)(2)PbI3-based perovskite solar cells using inverted verticalcone photonic-crystal nanostructures. For CH3NH3PbI3 perovskite solar cells, the maximum achievable photocurrent density (MAPD) reaches 25.1 mA/cm(2), corresponding to 92% of the total available photocurrent in the absorption range of 300 nm to 800 nm. Our cell shows 6% absorption enhancement compared to the Lambertian limit (23.7 mA/cm(2)) and has a projected power conversion efficiency of 12.9%. Excellent solar absorption is numerically demonstrated over a broad angular range from 0 to 60 degree for both S- and P-polarizations. For the corresponding CH(NH2)(2)PbI3 based perovskite solar cell, with absorption range of 300 nm to 850 nm, we find a MAPD of 29.1 mA/cm(2), corresponding to 95.4% of the total available photocurrent. The projected power conversion efficiency of the CH(NH2)(2)PbI3 based photonic crystal solar cell is 23.4%, well above the current world record efficiency of 20.1%. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Light-Trapping Electrode for the Efficiency Enhancement of Bifacial Perovskite Solar Cells
    Obraztsova, Anna A.
    Barettin, Daniele
    Furasova, Aleksandra D.
    Voroshilov, Pavel M.
    Maur, Matthias Auf Der
    Orsini, Andrea
    Makarov, Sergey, V
    [J]. NANOMATERIALS, 2022, 12 (18)
  • [2] Self-Healing Optical Structures for Light-Trapping in Perovskite Solar Cells
    Wan, Guanxiang
    Alvianto, Ezra
    Guo, Hongchen
    Wang, Xi
    Shin, Young-Eun
    Liang, Fang-Cheng
    Hou, Yi
    Tee, Benjamin C. K.
    [J]. ADVANCED OPTICAL MATERIALS, 2024,
  • [3] LIMIT OF NANOPHOTONIC LIGHT-TRAPPING IN SOLAR CELLS
    Yu, Zongfu
    Raman, Aaswath
    Fan, Shanhui
    [J]. 35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010, : 76 - 78
  • [4] Nanophotonic light-trapping theory for solar cells
    Zongfu Yu
    Aaswath Raman
    Shanhui Fan
    [J]. Applied Physics A, 2011, 105 : 329 - 339
  • [5] Directional selectivity and light-trapping in solar cells
    Ulbrich, Carolin
    Fahr, Stephan
    Peters, Marius
    Uepping, Johannes
    Kirchartz, Thomas
    Rockstuhl, Carsten
    Goldschmidt, Jan Christoph
    Loeper, Philipp
    Wehrspohn, Ralf
    Gombert, Andreas
    Lederer, Falk
    Rau, Uwe
    [J]. PHOTONICS FOR SOLAR ENERGY SYSTEMS II, 2008, 7002
  • [6] Rugate filter for light-trapping in solar cells
    Fahr, Stephan
    Ulbrich, Carolin
    Kirchartz, Thomas
    Rau, Uwe
    Rockstuhl, Carsten
    Lederer, Falk
    [J]. OPTICS EXPRESS, 2008, 16 (13): : 9332 - 9343
  • [7] LIGHT-TRAPPING LENSES FOR SOLAR-CELLS
    DAVIES, PA
    [J]. APPLIED OPTICS, 1992, 31 (28): : 6021 - 6026
  • [8] Nanophotonic light-trapping theory for solar cells
    Yu, Zongfu
    Raman, Aaswath
    Fan, Shanhui
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 105 (02): : 329 - 339
  • [9] Light-trapping in dye-sensitized solar cells
    Foster, Stephen
    John, Sajeev
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (10) : 2972 - 2983
  • [10] Topology optimization for light-trapping structure in solar cells
    Yu, Shuangcheng
    Wang, Chen
    Sun, Cheng
    Chen, Wei
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2014, 50 (03) : 367 - 382