Improve Visual Tracking by End-to-end Multi-Tracker Selection

被引:0
|
作者
Zheng, Tianqi [1 ]
Xie, Chao [1 ]
Zhou, Wengang [1 ]
Li, Houqiang [1 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Technol Geospatial Informat Proc & Ap, Hefei, Peoples R China
关键词
Tracking; selection; multi-trackers; end-to-end;
D O I
10.1145/3007669.3007696
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
While many state-of-the-art trackers focus on solving certain parts of the tracking problem (e.g., dealing with occlusion and scale variation), it is beneficial to exploit the merits of multiple trackers to tackle different application scenarios. This paper proposes an end-to-end tracker selection method to improve visual tracking performance. Any trackers with arbitrary tracking strategy can be integrated in our framework without the need of modifying any single component tracker, which is simple and effective. We introduce a novel verification mechanism to select the most reliable tracking result from multiple trackers. Both qualitative and quantitative evaluations demonstrate that the proposed method achieves a consistent performance improvement on the benchmark dataset.
引用
收藏
页码:242 / 245
页数:4
相关论文
共 50 条
  • [1] End-to-end DeepNCC framework for robust visual tracking
    Dai, Kaiheng
    Wang, Yuehuan
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2020, 70
  • [2] End-to-end deep metric network for visual tracking
    Shengjing Tian
    Shuwei Shen
    Guoqiang Tian
    Xiuping Liu
    Baocai Yin
    [J]. The Visual Computer, 2020, 36 : 1219 - 1232
  • [3] End-to-end deep metric network for visual tracking
    Tian, Shengjing
    Shen, Shuwei
    Tian, Guoqiang
    Liu, Xiuping
    Yin, Baocai
    [J]. VISUAL COMPUTER, 2020, 36 (06): : 1219 - 1232
  • [4] CHAINED-CENTER-TRACKER: AN EFFICIENT END-TO-END NEURAL NETWORK FOR AUTOMATED MULTI-OBJECT TRACKING
    Yang, Jianxi
    Yu, Chaoshun
    Jiang, Shixin
    Wang, Di
    Li, Hao
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2023, 38 (04): : 306 - 316
  • [5] Learning reinforced attentional representation for end-to-end visual tracking
    Gao, Peng
    Zhang, Qiquan
    Wang, Fei
    Xiao, Liyi
    Fujita, Hamido
    Zhang, Yan
    [J]. INFORMATION SCIENCES, 2020, 517 : 52 - 67
  • [6] End-to-end Visual Object Tracking with Motion Saliency Guidance
    Zhang, Yucheng
    Liu, Kexin
    Wang, Tian
    [J]. PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 6566 - 6571
  • [7] Tracking Ransomware End-to-end
    Huang, Danny Yuxing
    Aliapoulios, Maxwell Matthaios
    Li, Vector Guo
    Invernizzi, Luca
    McRoberts, Kylie
    Bursztein, Elie
    Levin, Jonathan
    Levchenko, Kirill
    Snoeren, Alex C.
    McCoy, Damon
    [J]. 2018 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP), 2018, : 618 - 631
  • [8] End-to-end feature fusion Siamese network for adaptive visual tracking
    Guo, Dongyan
    Wang, Jun
    Zhao, Weixuan
    Cui, Ying
    Wang, Zhenhua
    Chen, Shengyong
    [J]. IET IMAGE PROCESSING, 2021, 15 (01) : 91 - 100
  • [9] SPCNet: Scale Position Correlation Network for End-to-End Visual Tracking
    Wang, Qiang
    Gao, Jin
    Zhang, Mengdan
    Xing, Junliang
    Hu, Weiming
    [J]. 2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 1803 - 1808
  • [10] Joint Detection and Association for End-to-End Multi-object Tracking
    Ye Li
    Xiaoyu Luo
    Junyu Shi
    Xinzhong Wang
    Guangqiang Yin
    Zhiguo Wang
    [J]. Neural Processing Letters, 2023, 55 : 11823 - 11844