NARMAX Identification of DC Motor Model Using Repulsive Particle Swarm Optimization

被引:0
|
作者
Supeni, E.
Yassin, Ihsan M.
Ahmad, A.
Rahman, F. Y. Abdul
机构
关键词
Neural Network Applications; System Identification; DC Motors; Stochastic Approximation;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper explores the usage of repulsive particle swarm optimization (RPSO) to perform Non-linear Auto-Regressive with exogenous input (NARMAX) system identification of Direct Current (DC) motor. The NARMAX model was constructed using a recurrent Artificial Neural Network (ANN) model by Rahim and Taib and Yassin et al. The comparison result was made between RPSO method and inertia weight-based PSO method by Yassin et al. to train the NARMAX model The result shows that RPSO yielded comparable performance to the inertia weight-based PSO method in determining NARMAX coefficients in the model.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [1] Parameter Identification of DC Motor Drive Systems using Particle Swarm Optimization
    Hafez, Ishaq
    Dhaouadi, Rached
    [J]. 2021 7TH INTERNATIONAL CONFERENCE ON ENGINEERING AND EMERGING TECHNOLOGIES (ICEET 2021), 2021, : 832 - 837
  • [2] System Identification of a DC Motor Using Different Variants of Particle Swarm Optimization Technique
    Kar, Subhajit
    Das Sharma, Kaushik
    [J]. INTERNATIONAL CONFERENCE ON MODELING, OPTIMIZATION, AND COMPUTING, 2010, 1298 : 238 - +
  • [3] Nonlinear system identification for a DC motor using NARMAX approach
    Rahim, NA
    Taib, MN
    Yusof, MI
    [J]. SENSORS: ASIASENSE 2003 - ASIAN CONFERENCE ON SENSORS, 2003, : 305 - 311
  • [4] Design Optimization of Brush less DC Motor using Particle Swarm Optimization
    Umadevi, N.
    Balaji, M.
    Kamaraj, V.
    [J]. PROCEEDINGS OF THE 2014 IEEE 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL ENERGY SYSTEMS (ICEES), 2014, : 122 - 125
  • [5] PID Control of DC motor using Particle swarm Optimization (PSO) Algorithm
    Moghaddas, Mahbubeh
    Dastranj, Mohamadreza
    Changizi, Nemat
    Rouhani, Modjtaba
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2010, 1 (04): : 386 - 391
  • [6] Parameter identification of a cage induction motor using particle swarm optimization
    Nikranajbar, A.
    Ebrahimi, M. K.
    Wood, A. S.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2010, 224 (I5) : 479 - 491
  • [7] Turboprop Cycle Optimization Using Repulsive Particle Swarm Algorithm
    Boulkeraa, Tayeb
    Ghenaiet, Adel
    [J]. JOURNAL OF PROPULSION AND POWER, 2010, 26 (04) : 882 - 891
  • [8] Aerospace design optimization using a compound repulsive particle swarm
    Badyrka, Jeffrey M.
    Hartfield, Roy J.
    Jenkins, Rhonald M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) : 8311 - 8331
  • [9] ARMA Model identification using Particle Swarm Optimization Algorithm
    Wang, Jianzhou
    Liang, Jinzhao
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, 2008, : 223 - 227
  • [10] Parameter Identification of Induction Motor Using Modified Particle Swarm Optimization Algorithm
    Emara, Hassan M.
    Elshamy, Wesam
    Bahgat, A.
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1-5, 2008, : 2194 - +