fuzzy sets;
regression models;
estimation;
fuzzy least squares;
linear programming;
noise cluster;
outlier;
D O I:
10.1016/S0165-0114(02)00123-9
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
Fuzzy regression analysis can be thought of as a fuzzy variation of classical regression analysis. It has been widely studied and applied in diverse areas. In general, the analysis of fuzzy regression models can be roughly divided into two categories. The first is based on Tanaka's linear-programming approach. The second category is based on the fuzzy least-squares approach. In this paper, new types of fuzzy least-squares algorithms with a noise cluster for interactive fuzzy linear regression models are proposed. These algorithms are robust for the estimation of fuzzy linear regression models, especially when outliers are present. Numerical examples are given to detail the effectiveness of this approach. (C) 2002 Elsevier Science B.V. All rights reserved.
机构:
Univ Roma La Sapienza, Dipartimento Stat Probabilita & Stat Applicate, I-00185 Rome, ItalyUniv Roma La Sapienza, Dipartimento Stat Probabilita & Stat Applicate, I-00185 Rome, Italy
D'Urso, P
Gastaldi, T
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Stat Probabilita & Stat Applicate, I-00185 Rome, ItalyUniv Roma La Sapienza, Dipartimento Stat Probabilita & Stat Applicate, I-00185 Rome, Italy
机构:
Freiberg Univ Min & Technol, Fac Math & Comp Sci, D-09596 Freiberg, GermanyFreiberg Univ Min & Technol, Fac Math & Comp Sci, D-09596 Freiberg, Germany
Wünsche, A
Näther, W
论文数: 0引用数: 0
h-index: 0
机构:
Freiberg Univ Min & Technol, Fac Math & Comp Sci, D-09596 Freiberg, GermanyFreiberg Univ Min & Technol, Fac Math & Comp Sci, D-09596 Freiberg, Germany