Elucidating the Molecular Determinants of Aβ Aggregation with Deep Mutational Scanning

被引:22
|
作者
Gray, Vanessa E. [1 ]
Sitko, Katherine [1 ]
Kameni, Floriane Z. Ngako [1 ]
Williamson, Miriam [1 ]
Stephany, Jason J. [1 ]
Hasle, Nicholas [1 ]
Fowler, Douglas M. [1 ,2 ,3 ]
机构
[1] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[2] Univ Washington, Dept Bioengn, Seattle, WA 98195 USA
[3] CIFAR, Genet Networks Program, Toronto, ON, Canada
来源
G3-GENES GENOMES GENETICS | 2019年 / 9卷 / 11期
基金
美国国家科学基金会;
关键词
Amyloid; Amyloid beta; Deep mutational scanning; Protein aggregation; ATOMIC-RESOLUTION STRUCTURE; ALZHEIMERS-DISEASE; FIBRIL STRUCTURE; AMYLOID FIBRILS; PROTEIN; MUTAGENESIS; AMYLOID-BETA(1-42); TRAFFICKING; ASSEMBLIES; NMR;
D O I
10.1534/g3.119.400535
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Despite the importance of A beta aggregation in Alzheimer's disease etiology, our understanding of the sequence determinants of aggregation is sparse and largely derived from in vitro studies. For example, in vitro proline and alanine scanning mutagenesis of A beta(40) proposed core regions important for aggregation. However, we lack even this limited mutagenesis data for the more disease-relevant A beta(42). Thus, to better understand the molecular determinants of A beta(42) aggregation in a cell-based system, we combined a yeast DHFR aggregation assay with deep mutational scanning. We measured the effect of 791 of the 798 possible single amino acid substitutions on the aggregation propensity of A beta(42). We found that similar to 75% of substitutions, largely to hydrophobic residues, maintained or increased aggregation. We identified 11 positions at which substitutions, particularly to hydrophilic and charged amino acids, disrupted A beta aggregation. These critical positions were similar but not identical to critical positions identified in previous A beta mutagenesis studies. Finally, we analyzed our large-scale mutagenesis data in the context of different A beta aggregate structural models, finding that the mutagenesis data agreed best with models derived from fibrils seeded using brain-derived A beta aggregates.
引用
收藏
页码:3683 / 3689
页数:7
相关论文
共 50 条
  • [1] Elucidating the Determinants of Polymerase Specificity by Microfluidic-Based Deep Mutational Scanning
    Nikoomanzar, Ali
    Vallejo, Derek
    Chaput, John C.
    [J]. ACS SYNTHETIC BIOLOGY, 2019, 8 (06): : 1421 - +
  • [2] Deep mutational scanning reveals the molecular determinants of RNA polymerase-mediated adaptation and tradeoffs
    Alaksh Choudhury
    Benoit Gachet
    Zoya Dixit
    Roland Faure
    Ryan T. Gill
    Olivier Tenaillon
    [J]. Nature Communications, 14
  • [3] Molecular determinants of Hsp90 dependence of Src kinase revealed by deep mutational scanning
    Nguyen, Vanessa
    Ahler, Ethan
    Sitko, Katherine A.
    Stephany, Jason J.
    Maly, Dustin J.
    Fowler, Douglas M.
    [J]. PROTEIN SCIENCE, 2023, 32 (07)
  • [4] Deep mutational scanning reveals the molecular determinants of RNA polymerase-mediated adaptation and tradeoffs
    Choudhury, Alaksh
    Gachet, Benoit
    Dixit, Zoya
    Faure, Roland
    Gill, Ryan T.
    Tenaillon, Olivier
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [5] Using deep mutational scanning to identify the determinants of antibiotic resistance
    Macdonald, Christian B.
    Kelley, Alexis
    Pellegrino, Jenna
    Coyote-Maestas, Willow
    Fraser, James
    [J]. BIOPHYSICAL JOURNAL, 2022, 121 (03) : 422A - 422A
  • [6] Determinants of Zika virus host tropism uncovered by deep mutational scanning
    Setoh, Yin Xiang
    Amarilla, Alberto A.
    Peng, Nias Y. G.
    Griffiths, Rebecca E.
    Carrera, Julio
    Freney, Morgan E.
    Nakayama, Eri
    Ogawa, Shinya
    Watterson, Daniel
    Modhiran, Naphak
    Nanyonga, Faith Elizabeth
    Torres, Francisco J.
    Slonchak, Andrii
    Periasamy, Parthiban
    Prow, Natalie A.
    Tang, Bing
    Harrison, Jessica
    Hobson-Peters, Jody
    Cuddihy, Thom
    Cooper-White, Justin
    Hall, Roy A.
    Young, Paul R.
    Mackenzie, Jason M.
    Wolvetang, Ernst
    Bloom, Jesse D.
    Suhrbier, Andreas
    Khromykh, Alexander A.
    [J]. NATURE MICROBIOLOGY, 2019, 4 (05) : 876 - 887
  • [7] Determinants of Zika virus host tropism uncovered by deep mutational scanning
    Yin Xiang Setoh
    Alberto A. Amarilla
    Nias Y. G. Peng
    Rebecca E. Griffiths
    Julio Carrera
    Morgan E. Freney
    Eri Nakayama
    Shinya Ogawa
    Daniel Watterson
    Naphak Modhiran
    Faith Elizabeth Nanyonga
    Francisco J. Torres
    Andrii Slonchak
    Parthiban Periasamy
    Natalie A. Prow
    Bing Tang
    Jessica Harrison
    Jody Hobson-Peters
    Thom Cuddihy
    Justin Cooper-White
    Roy A. Hall
    Paul R. Young
    Jason M. Mackenzie
    Ernst Wolvetang
    Jesse D. Bloom
    Andreas Suhrbier
    Alexander A. Khromykh
    [J]. Nature Microbiology, 2019, 4 : 876 - 887
  • [8] Computational Tools for Deep Mutational Scanning
    Rubin, Alan F.
    Esposito, Daniel
    Weile, Jochen
    Roth, Frederick P.
    Fowler, Douglas M.
    Papenfuss, Anthony T.
    [J]. PROTEIN SCIENCE, 2018, 27 : 51 - 51
  • [9] Applications of Deep Mutational Scanning in Virology
    Burton, Thomas D.
    Eyre, Nicholas S.
    [J]. VIRUSES-BASEL, 2021, 13 (06):
  • [10] Topological deep learning based deep mutational scanning
    Chen, Jiahui
    Woldring, Daniel R.
    Huang, Faqing
    Huang, Xuefei
    Wei, Guo-Wei
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 164