XPS and XAS investigation of condensed and adsorbed n-octane on a Cu(110) surface

被引:39
|
作者
Weiss, K
Öström, H
Triguero, L
Ogasawara, H
Garnier, MG
Pettersson, LGM
Nilsson, A
机构
[1] Uppsala Univ, Dept Phys, S-75121 Uppsala, Sweden
[2] KTH Syd, S-13640 Huddinge, Sweden
[3] Univ Basel, Inst Phys, CH-4056 Basel, Switzerland
[4] Univ Stockholm, Dept Phys, S-10691 Stockholm, Sweden
[5] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA
基金
瑞典研究理事会;
关键词
XPS; XAS; condensed and adsorbed n-octane; Cu(110) surface;
D O I
10.1016/S0368-2048(02)00282-7
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
The electronic structure of n-octane adsorbed on Cu(110) is studied by using X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) in combination with cluster model calculations in the framework of density functional theory (DFT). The molecule is found to be well oriented on the surface, which is seen from the high degree of XAS dichroism. Saturated hydrocarbons are commonly considered to physisorb on metals such as Cu(110), but still the C 1s XAS spectra reveal large changes in the electronic structure of the adsorbed octane relative to the free molecule. We find that the XAS resonances corresponding to the molecular Rydberg-valence states are strongly quenched upon adsorption and that there is a significant hybridization of the molecular valence orbitals with the metal bands. In addition to a precise interpretation of the XAS spectra, we present details on the molecular orbital structure of the adsorbed octane molecule. We also discuss shifts in the relative binding energies of the chemically inequivalent carbon atoms in octane upon adsorption, which lead to a narrower XPS spectrum for the adsorbate than the condensed phase spectrum due to the existence of a new relaxation channel. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:179 / 191
页数:13
相关论文
共 50 条
  • [1] Orbital rehybridization in n-octane adsorbed on Cu(110)
    Öström, H
    Triguero, L
    Weiss, K
    Ogasawara, H
    Garnier, MG
    Nordlund, D
    Nyberg, M
    Pettersson, LGM
    Nilsson, A
    JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (08): : 3782 - 3789
  • [2] INVESTIGATION OF THE SURFACE TENSION OF N-HEPTANE AND N-OCTANE
    VOLYAK, LD
    ANDREEVA, LP
    ZHURNAL FIZICHESKOI KHIMII, 1961, 35 (07): : 1416 - 1417
  • [3] Surface Freezing of n-octane Nanodroplets
    Modak, Viraj
    Pathak, Harshad
    Thayer, Mitchell
    Singer, Sherwin
    Wyslouzil, Barbara
    NUCLEATION AND ATMOSPHERIC AEROSOLS, 2013, 1527 : 89 - 92
  • [5] An investigation of iron modified hydroxyapatites used in the activation of n-octane
    Padayachee, Drushan
    Dasireddy, Venkata D. B. C.
    Singh, Sooboo
    Friedrich, Holger B.
    Bharuth-Ram, Krish
    Govender, Alisa
    MOLECULAR CATALYSIS, 2017, 438 : 256 - 266
  • [6] ADSORPTION OF N-OCTANE AND N-PROPANOL ON THE GRAPHITE SURFACE PRECOATED WITH N-HEXADECANE
    BILINSKI, B
    WOJCIK, W
    MATERIALS CHEMISTRY AND PHYSICS, 1992, 30 (03) : 209 - 215
  • [7] AN IRAS STUDY OF ADSORBED ACRYLONITRILE ON CU(110) SURFACE
    KUBOTA, J
    KONDO, J
    DOMEN, K
    HIROSE, C
    JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 1993, 64-5 : 137 - 144
  • [8] GEOMETRIC STRUCTURE OF ETHYLENOXIDE ADSORBED ON Cu(110) SURFACE
    Xun Sheng Zhang Department of Physics Zhejiang University Hangzhou PRChina Zhi Qiang Du Department of Chemistry Zhejiang University
    真空科学与技术, 1992, (Z1) : 123 - 126
  • [9] In situ observation of the on-surface thermal dehydrogenation of n-octane on Pt(111)
    Arribas, Daniel
    Villalobos-Vilda, Victor
    Tosi, Ezequiel
    Lacovig, Paolo
    Baraldi, Alessandro
    Bignardi, Luca
    Lizzit, Silvano
    Martinez, Jose Ignacio
    de Andres, Pedro Luis
    Gutierrez, Alejandro
    Martin-Gago, Jose Angel
    Merino, Pablo
    NANOSCALE, 2023, 15 (35) : 14458 - 14467
  • [10] Monte Carlo simulations of n-butane and n-octane adsorbed onto graphite and a molecular model of activated carbon
    María E. Farías Hermosilla
    Néstor A. Pérez Chávez
    Alberto G. Albesa
    Adsorption, 2019, 25 : 1419 - 1424