Augmenting the electrochemical performance of NiMn2O4 by doping of transition metal ions and compositing with rGO

被引:23
|
作者
Sandhiya, M. [1 ,2 ]
Subramani, K. [1 ]
Sathish, M. [1 ,2 ]
机构
[1] CSIR Cent Electrochem Res Inst, Electrochem Power Sources ECPS Div, Karaikkudi 630003, Tamil Nadu, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
关键词
Nickel manganese oxide; Doping; Nanocomposite; High energy density; Long cycle life; Supercapacitor; GRAPHENE OXIDE; HYDROTHERMAL SYNTHESIS; SUPERCAPACITOR; CAPACITANCE; ELECTRODES; FACILE; CONSTRUCTION; CARBON;
D O I
10.1016/j.jcis.2021.04.023
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The transition metal ions (TMIs) such as Co2+ and Zn2+ doped NiMn2O4 (NMO)/rGO nanocomposite syn-thesized by facile sol-gel method was used for the fabrication of supercapacitor. The presence of metal ions in the nanocomposite was confirmed by X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscope (HR-TEM) mapping techniques. The fabricated electrode showed high specific capacitance of 710 F/g which was 3-fold higher than NMO (254 F/g). The addition of RGO in the nanocomposite increased the cycle stability of TMIs doped NMO significantly from 51 to 91%. In addition, the symmetric supercapacitor (SSC) fabricated using TMIs doped NMO/rGO nanocomposite with 3.5 M KOH as an electrolyte delivered a maximum energy density of 43 Wh/kg and power density of 10 kW/ kg. Furthermore, the SSC device retained 90% of capacitance retention over 10,000 cycles with coulombic efficiency of 99% at 5 A/g. These result suggested that the TMIs doped NMO/rGO nanocomposite electrode is a promising material for high-energy supercapacitors. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:409 / 418
页数:10
相关论文
共 50 条
  • [1] Preparation of NiMn2O4 nanoflowers and NiMn2O4 nanoparticles and their electrochemical properties in supercapacitor
    Li, Mingwei
    Yang, Shaobin
    Jia, Jing
    Gu, Jinfeng
    Geng, Fuyang
    [J]. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39 (05): : 1844 - 1850
  • [2] Effect of particle morphology on the electrochemical performance of hydrothermally synthesized NiMn2O4
    Saha, Samik
    Roy, Atanu
    Ray, Apurba
    Das, Trisha
    Nandi, Mahasweta
    Ghosh, Basudev
    Das, Sachindranath
    [J]. ELECTROCHIMICA ACTA, 2020, 353
  • [3] NIMN2O4 REVISITED
    TANG, XX
    MANTHIRAM, A
    GOODENOUGH, JB
    [J]. JOURNAL OF THE LESS-COMMON METALS, 1989, 156 : 357 - 368
  • [4] Preparation and electrochemical properties of NiMn2O4 spinel oxide cathode
    Xiao, Yang
    Xu, Chunming
    Yang, Xiaoxia
    Zhang, Lihong
    Sun, Wang
    Qiao, Jinshuo
    Wang, Zhenhua
    Sun, Kening
    [J]. Huagong Xuebao/CIESC Journal, 2020, 71 (09): : 4292 - 4302
  • [5] Decomposition of NiMn2O4 spinels
    G D C. Csete de Györgyfalva
    I. M. Reaney
    [J]. Journal of Materials Research, 2003, 18 : 1301 - 1308
  • [6] Growth and electrochemical performance of porous NiMn2O4 nanosheets with high specific surface areas
    Hailong Yan
    Tong Li
    Kangwen Qiu
    Yang Lu
    Jinbing Cheng
    Yunxin Liu
    Jinyou Xu
    Yongsong Luo
    [J]. Journal of Solid State Electrochemistry, 2015, 19 : 3169 - 3175
  • [7] Growth and electrochemical performance of porous NiMn2O4 nanosheets with high specific surface areas
    Yan, Hailong
    Li, Tong
    Qiu, Kangwen
    Lu, Yang
    Cheng, Jinbing
    Liu, Yunxin
    Xu, Jinyou
    Luo, Yongsong
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (10) : 3169 - 3175
  • [8] Decomposition of NiMn2O4 spinels
    Csete de Györgyfalva, G.D.C.
    Reaney, I.M.
    [J]. J Mater Res, 1600, 6 (1301-1308):
  • [9] Decomposition of NiMn2O4 spinels
    de Györgyfalva, GDCC
    Reaney, IM
    [J]. JOURNAL OF MATERIALS RESEARCH, 2003, 18 (06) : 1301 - 1308
  • [10] THERMOANALYTICAL CHARACTERIZATION OF NIMN2O4 FORMATION
    JUNG, J
    TOPFER, J
    FELTZ, A
    [J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 1990, 36 (04) : 1505 - 1518