Semi-automatic Spine Segmentation Method of CT Data

被引:0
|
作者
Mateusiak, Malgorzata [1 ]
Mikolajczyk, Krzysztof [2 ]
机构
[1] Inst Biomed Engn & Metrol WUT, Warsaw, Poland
[2] PMOD Technol LLC, Sumatrastr 25, CH-8006 Zurich, Switzerland
关键词
Vertebrae segmentation; Intervertebral disc segmentation; Semi-automatic spine segmentation;
D O I
10.1007/978-3-030-29993-4_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Computer Tomography modality perfectly visualizes hard tissues - cancellous and cortical bone. For purpose of spine segmentation CT data were chosen. Main goal of the presented work is to achieve independent sets of segmented vertebrae and intervertebral discs by minimum effort of manual user interaction. Additionally, vertebrae structures that are built with two bony tissues, should be segmented independently. To detect discs, volume between vertebral endplates is analyzed and then classified as a disc. The key points in the proposed algorithm is to prepare manual area correction of joints area and separation in intervertebral level and automation in seed detection for region growing method based on anatomical vertebra characteristic. Segmented data can be used for generating surface and volume meshes for custom spine models for Finite Element Modeling and analysis.
引用
收藏
页码:29 / 35
页数:7
相关论文
共 50 条
  • [1] Robust semi-automatic segmentation method: an expert assistant tool for muscles in CT and MR data
    Azimbagirad, Mehran
    Dardenne, Guillaume
    Ben Salem, Douraied
    Werthel, Jean-David
    de Casson, Francois Boux
    Stindel, Eric
    Garraud, Charles
    Remy-Neris, Olivier
    Burdin, Valerie
    [J]. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2024, 11 (07):
  • [2] Semi-Automatic Segmentation and Tracking of CVH Data
    Qu, Yingge
    Heng, Pheng Ann
    Wong, Tien-Tsin
    [J]. MEDICINE MEETS VIRTUAL REALITY 14: ACCELERATING CHANGE IN HEALTHCARE: NEXT MEDICAL TOOLKIT, 2006, 119 : 437 - 439
  • [3] A semi-automatic method for vascular image segmentation
    School of Biology, Hunan University, Changsha, China
    不详
    [J]. Proc. - Int. Conf. Image Graph., ICIG, (3-7):
  • [4] Semi-automatic Segmentation of Injury Zones in post-interventional CT Data
    Egger, Jan
    Busse, Harald
    Moche, Michael
    Brandmaier, Philipp
    Seider, Daniel
    Gawlitza, Matthias
    Strocka, Steffen
    Garnov, Nikita
    Fuchs, Jochen
    Voigt, Peter
    Dazinger, Florian
    Voglreiter, Philip
    Dokter, Mark
    Hofmann, Michael
    Hann, Alexander
    Freisleben, Bernd
    Kahn, Thomas
    Schmalstieg, Dieter
    [J]. BILDVERARBEITUNG FUR DIE MEDIZIN 2015: ALGORITHMEN - SYSTEME - ANWENDUNGEN, 2015, : 281 - 286
  • [5] SEMI-AUTOMATIC SEGMENTATION OF SPEECH FOR OBTAINING SYNTHESIS DATA
    OLIVE, JP
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1976, 60 : S107 - S107
  • [6] SEraMic: A semi-automatic method for the segmentation of grain boundaries
    Podor, R.
    Goff, X. Le
    Lautru, J.
    Brau, H. P.
    Massonnet, M.
    Clavier, N.
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (10) : 5349 - 5358
  • [7] Semi-automatic segmentation of the prostate
    Zwiggelaar, R
    Zhu, YN
    Williams, S
    [J]. PATTERN RECOGNITION AND IMAGE ANALYSIS, PROCEEDINGS, 2003, 2652 : 1108 - 1116
  • [8] Principles and methods for automatic and semi-automatic tissue segmentation in MRI data
    Wang, Lei
    Chitiboi, Teodora
    Meine, Hans
    Guenther, Matthias
    Hahn, Horst K.
    [J]. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2016, 29 (02) : 95 - 110
  • [9] Principles and methods for automatic and semi-automatic tissue segmentation in MRI data
    Lei Wang
    Teodora Chitiboi
    Hans Meine
    Matthias Günther
    Horst K. Hahn
    [J]. Magnetic Resonance Materials in Physics, Biology and Medicine, 2016, 29 : 95 - 110
  • [10] Semi-automatic Method for Intervertebral Kinematics Measurement in the Cervical Spine
    Nohr, Anne Krogh
    Pilgaard, Louise Pedersen
    Hansen, Bolette Dybkjaer
    Nedergaard, Rasmus
    Haavik, Heidi
    Lindstroem, Rene
    Plocharski, Maciej
    Ostergaard, Lasse Riis
    [J]. IMAGE ANALYSIS, SCIA 2017, PT II, 2017, 10270 : 302 - 313