Off-line learning with transductive confidence machines: An empirical evaluation

被引:15
|
作者
Vanderlooy, Stijn [1 ]
van der Maaten, Laurens [1 ]
Sprinkhuizen-Kuyper, Ida [2 ]
机构
[1] Maastricht Univ, MICC IKAT, POB 616, NL-6200 MD Maastricht, Netherlands
[2] Radboud Univ Nijmegen, NICI, NL-6500 HE Nijmegen, Netherlands
关键词
D O I
10.1007/978-3-540-73499-4_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The recently introduced transductive confidence machines (TCMs) framework allows to extend classifiers such that they satisfy the calibration property. This means that the error rate can be set by the user prior to classification. An analytical proof of the calibration property was given for TCMs applied in the on-line learning setting. However, the nature of this learning setting restricts the applicability of TCMs. In this paper we provide strong empirical evidence that the calibration property also holds in the off-line learning setting. Our results extend the range of applications in which TCMs can be applied. We may conclude that TCMs are appropriate in virtually any application domain.
引用
收藏
页码:310 / +
页数:3
相关论文
共 50 条
  • [1] Transductive confidence machines
    Rogers, James
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2011, 3 (03): : 216 - 220
  • [2] Off-line testing of reluctance machines
    Jovanovic, MG
    Betz, RE
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 1999, 14 (03) : 264 - 269
  • [3] Transductive confidence machines for pattern recognition
    Proedrou, K
    Nouretdinov, I
    Vovk, V
    Gammerman, A
    MACHINE LEARNING: ECML 2002, 2002, 2430 : 381 - 390
  • [4] A NOTE ON OFF-LINE MACHINES WITH BROWNIAN INPUT HEADS
    RUOHONEN, K
    DISCRETE APPLIED MATHEMATICS, 1984, 9 (01) : 69 - 75
  • [5] VISITS, CROSSES, AND REVERSALS FOR NONDETERMINISTIC OFF-LINE MACHINES
    GREIBACH, SA
    INFORMATION AND CONTROL, 1978, 36 (02): : 174 - 216
  • [6] An empirical evaluation of off-line arabic handwriting and printed characters recognition system
    Department of Computer Science and Information System, Jazan University, Jazan, Saudi Arabia
    Int. J. Comput. Sci. Issues, 2012, 6 6-1 (29-35):
  • [7] Evaluation of GPU-Based Empirical Mode Decomposition for Off-Line Analysis
    Waskito, Pulung
    Miwa, Shinobu
    Mitsukura, Yasue
    Nakajo, Hironori
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2011, E94D (12): : 2328 - 2337
  • [8] Off-line evaluation of recommendation functions
    Zhu, TS
    Greiner, R
    Häubl, G
    Jewell, K
    Price, B
    USER MODELING 2005, PROCEEDINGS, 2005, 3538 : 337 - 341
  • [9] Efficient evaluation of natural stochastic policies in off-line reinforcement learning
    Kallus, Nathan
    Uehara, Masatoshi
    BIOMETRIKA, 2024, 111 (01) : 51 - 69
  • [10] The significance of off-line learning for on-line projects
    Scott, DJ
    ROADBLOCKS ON THE INFORMATION HIGHWAY: THE IT REVOLUTION IN JAPANESE EDUCATION, 2003, : 249 - 264